
COMP4805 – Honours Thesis

Topic: Induction of Defeasible Logic Theories in the Legal Domain

Student: Benjamin Johnston

Number: 33551715

Email: s355171@student.uq.edu.au

Supervisor: Guido Governatori

Degree: Bachelor of Information Technology

Course: COMP4805

Statement of Originality

I declare that the work presented in the thesis is, to the best of my knowledge

and belief, original and my own work, except as acknowledged in the text, and

that the material has not been submitted, either in whole or in part, for a degree

at this or any other university.

Benjamin Johnston

i

Acknowledgements

I’d like to thank the following people who are among those who have helped make

this thesis what it is;

• My Saviour: Jesus Christ

For making me who I am, and inspiring me to try to be a better person.

• My Supervisor: Guido Governatori

For encouraging me to explore all sorts of interesting tangents, helping me

get more out of Honours than I would have otherwise expected.

• My Family: Graham, Sue, Michael

For providing the loving support through all the years of my life.

• My Closest Friends: Jeremy Jones, Owen Thomas, Andrew Whitby

For being there for me.

• My Fellow Students

For making the honours labs the place to be when you need a break from

work.

• My Second Examiner: Ralf Muhlberger

For being the supremely intelligent, inspirational, witty and cultured person

that he is.

• The ITEE Information Systems Group

For entertaining a thesis that ended up having barely tenuous connections

to database technology, and for offering helpful suggestions during my sem-

inars.

ii

Publication Arising from this Work

• Benjamin Johnston and Guido Governatori. An Algorithm for the Induc-

tion of Defeasible Logic Theories from Databases. Accepted for the Four-

teenth Australasian Database Conference, 2003.

iii

Abstract

The market for intelligent legal information systems remains relatively untapped,

but it is a domain for which information systems could offer dramatic cost re-

ductions whilst simultaneously improving accuracy. Even though there does not

appear to be any technical or ethical reasons that might make the development

of such systems infeasible, none of the recorded attempts in this domain have re-

ported overwhelming successes. An analysis suggests that the fundamental failure

of these prior attempts is a poor balance between powerful knowledge representa-

tions and efficient methods of encoding knowledge – a problem that can be solved

with defeasible logic.

Defeasible logic is a non-monotonic logic with proven successes in representing

legal knowledge that overcomes many of the deficiencies of prior efforts. Unfortu-

nately, an immediate application of technology to the challenges in this domain is

an expensive and computationally intractable problem. So, in light of the poten-

tial benefits, we have developed a practical algorithm that uses heuristics to dis-

cover approximate solutions to the challenges. The algorithm integrates defeasible

logic into a decision support system by automatically deriving its knowledge from

databases of precedents. Experiments with the new algorithm are very promising

– delivering results comparable to and exceeding other approaches.

Integrating this work into a meaningful operational context is a difficult chal-

lenge, but that can be solved using semi-structured data formalisms such as XML.

Some work has been done in this area, but much of the routine implementation

remains. However, the future of this work is extremely promising and worthwhile

of further research and development.

iv

Contents

1 Introduction 1

1.1 Intended Outcomes . 2

1.2 Assumed Requirements . 3

2 Foundation and Context 6

2.1 Jurisprudential Justification . 6

2.2 Structuring Input . 7

2.3 Ethical Considerations . 8

2.3.1 Possible Elimination of Compassion 8

2.3.2 Possible Prevention of Evolutionary Change 9

2.3.3 Possiblity of Unequal Availability and Subversion 10

2.3.4 Possibility for Invasion of Privacy and Security 11

2.3.5 Conclusions . 11

3 Related Work 12

3.1 Case Based Reasoning . 12

3.2 Attribute-Value and Propositional Learners 13

3.3 Neural Networks, Bayesian Networks and Other Continuous Model

Fitting . 13

3.4 Association Rules . 14

3.5 Inductive Logic Programming . 15

4 Defeasible Logic 16

4.1 An Example . 17

4.2 Formal Definition . 18

v

5 Induction of Theories 22

5.1 Theoretical Foundation . 22

5.2 Inductive Logic Programming . 29

5.2.1 Direct Generalisation from Examples 30

5.2.2 Meta-queries . 30

5.2.3 Inverse Resolution . 30

5.2.4 Top Down Refinement . 31

5.2.5 Problem Transformation 31

5.3 A New Algorithm: HeRO . 32

6 Experimental Results 36

6.1 HeRO on Known Theories . 36

6.1.1 Simple Exception . 36

6.1.2 Aggregate vs Separate . 37

6.1.3 General vs Specific . 37

6.1.4 Conclusions . 38

6.2 HeRO Versus Other Approaches 38

6.2.1 DefGen . 38

6.2.2 Neural Networks and Association Rules 39

6.2.3 Conclusions . 41

7 Application of HeRO 43

7.1 The Knowledge Discovery Process 43

7.2 Dataset Generation . 44

7.2.1 XML Query Languages . 45

7.2.2 Description Logics . 47

7.3 Discussion . 50

8 Future Work 52

8.1 HeRO as an Algorithm for ILP 52

8.2 HeRO over Continuous Variables 53

8.3 Development of HeRO as a Product 53

8.3.1 Scalability . 53

8.3.2 User Interface . 54

8.3.3 Integrated Knowledge Discovery Environments 55

vi

8.3.4 Field Experiments . 56

9 Conclusions 57

Bibliography 59

A C# Implementation of HeRO 65

A.1 Home.cs . 66

A.2 Literal.cs . 69

A.3 Record.cs . 74

A.4 Rule.cs . 80

A.5 Theory.cs . 95

B XSLT Template for Dataset Generation 104

C Prolog Defeasible Logic Meta-program 106

vii

List of Figures

4.1 Hypothetical Criminal Law Theory 17

5.1 Example Construction of a (Poor) Describing Theory 23

5.2 Example Construction for Proof of NP-Hardness 26

5.3 Simplified Model Inference System 31

5.4 Defeasible Theory Search Algorithm 32

5.5 Rule Search Routine . 35

7.1 Sample XML document describing a drink-driving accident 46

7.2 Example Dataset Definition using XPath2 48

7.3 Example Dataset Definition using DL 50

viii

Chapter 1

Introduction

Law is still a domain with relatively low penetration of intelligent information

systems, but clearly one in which such systems would be immediately beneficial.

The growing pressure on the legal system to reach conclusions with accuracy

and expediency, the need to increase public confidence in the consistency and

equality of the legal process, and also the need for providing quality advice to

those considering beginning legal proceedings are the motivations for producing

legal information systems. The legal domain has several peculiarities, namely the

importance of extremely high accuracy, the value of judicial independence and

the need for presenting both the decisions and the rationale in a language that

is natural to its users. These peculiarities are constraints on the development of

information systems that, to date, have yet to be adequately overcome.

While technology has made significant in-roads to the legal profession, much of

its application is in text storage and retrieval as opposed to intelligent information

systems. While some projects have achieved minor successes in attempting to

produce more powerful systems that aid the legal decision making process, the

legal community has not whole-heartedly taken up these technologies (they do

not form a common part of a lawyer’s tool-set). This project seeks to produce a

system that provides valuable assistance to the decision making process of law-

makers – this is achieved by providing a tool that offers advice, and reasoning

that supports the advice, given information about current legal proceedings.

Page 1 – Chapter 1

1.1 Intended Outcomes

The development of intelligent legal information systems should offer the legal

community benefits that are difficult to realise without computer technologies.

Thus, we direct our efforts to achieve three major goals:

1. To Assist in Accurate and Expedient Decision Making

The importance of a case’s outcome and the influence it might have on an

individual’s life, mean that the utmost care is required in reaching any de-

cision. Unfortunately, there are contradicting pressures on the legal system

(and on any modern organisation) to produce accurate outcomes faster and

at lower costs.

2. To Help Reach Consistent Decisions

A challenge in the legal system is to address the public’s growing disillu-

sionment regarding the equality and consistency of decisions. A legal in-

formation system could assist decision makers in ensuring the consistency

of the decision making process across different cases, judges and states or

districts. This consistency could be achieved by presenting the rationale

and outcome of similar cases, or by allowing for the analysis of trends in

the adjudications of the decision-making processes. Of course, law is an

evolutionary process – this means that two virtually identical cases that

occur in at different times (and therefore in different social contexts) might

result in entirely opposite adjudications. A legal information system should

therefore not seek to prevent all change, but it is important that when law

workers deviate from established practice and precedent they do so in full

knowledge of that fact.

Another possible application of a legal information system is to aid decision

makers’s introspective analysis of their own possible biases or prejudices.

A decision maker could attend to the undesirable trends (such as race or

gender bias) that the information system may have detected within prece-

dents.

3. To Provide Good Advice and Information at a Low Cost

Whether information is needed by legal professionals or by a member of

the public considering legal action, the unstructured nature of existing legal

Page 2 – Section 1.1

databases makes querying and inference with such data difficult and labour-

intensive. By structuring legal information, and developing information

systems that can make inferences about new cases, the legal system could

use these tools to provide better and quicker adjudications than otherwise

possible.

Even though legal information systems are to assist in the decision making

process, judicial independence and the need for compassion and humanity in

legal decision making is such that we do not intend to replace the role of the

judge – but simply assist him or her in producing a more accurate and equitable

decision. For this reason, the ultimate goal of this project is best termed as the

construction of a legal decision support system (LDSS).

1.2 Assumed Requirements

While a law worker using a legal decision support system would recognise that

no system can be faultless and would therefore carefully consider any conclusions

that the system reaches, it is still important that the system does indeed produce

fair decisions and operates with high accuracy so that it provides value to its

users. We therefore have to consider the unusual “requirements” in the legal

domain:

1. Conclusions Presented with Justifications

Unlike domains where a correct answer “speaks for itself”, in law it is nec-

essary to provide an answer as well as the justification and/or the reasoning

behind the answer. A decision maker can use the justifications to verify the

correctness of a decision, and users considering entering legal proceedings

can consider what factors were used in the decision making process and

thereby possibly invest time and effort into rectifying deficiencies in their

argument.

2. Justifications Presented in Lay-man’s Terms

Whereas in technical fields, such as engineering or mathematical sciences,

there can be a reasonable expectation of proficiency and technical under-

standing of computers, programming and mathematics, such assumptions

Page 3 – Section 1.2

can not be made of the typical user of an LDSS. Even though it is desir-

able to build an LDSS on a strong theoretical basis1, it is inappropriate to

require that users understand the theory before they can correctly use the

tool. Lawyers and judges do not undertake courses in formal logic (and it

is much less likely for a member of the general public to have undergone

such training), so presentation of arguments must be carefully considered

so as to be clear and natural to the users of the LDSS.

3. A Verifiable and Comprehensible Internal Representation

In order that its users understand the strengths and weaknesses of the

application of an LDSS, it is necessary to provide some means by which

the internal representation of the system can be inspected, verified and

validated. Ideally, it should be possible for the users of the system to

understand the representation without technical assistance.

4. A Conservative Mode of Operation

The importance of correctness is such that where the system is unable to

predict an answer correctly, it is better to give no answer than to incorrectly

and inconsistently produce an answer.

5. A Low Cost Method of Construction

For a system to be adopted by a rational user, its benefits must outweigh its

costs. By reducing production costs, the barrier to entry is reduced and with

sufficiently low costs it is possible to regularly reconstruct or maintain the

information system so as to remain consistent with current legal practice.

The difficulty in producing legal decision support systems is that these require-

ments are somewhat contradictory. For example, while automatically generating

knowledge bases might alleviate the problem of expense (as a result of less need

for expert knowledge in generating and structuring the data), this method of con-

struction typically reduces the confidence that users have in the soundness of the

system. Similarly, heuristics and large sets of training examples might improve

the accuracy and applicability of the system at the cost of a sound and verifi-

able reasoning method or the ability to examine and comprehend the underlying

reasoning involved in reaching a given conclusion.
1This is because a theoretical basis allows us to reason (and prove theorems) about a tool in

the abstract theory, without concern for the trivial details of the specific form of implementation.

Page 4 – Section 1.2

In spite of the inherent difficulties, the potential benefits to the legal commu-

nity make LDSSs a worthwhile area for research. This project therefore aims to

investigate these issues and develop technical solutions to the problem of process-

ing and reasoning with legal databases to produce legal decision support systems.

Page 5 – Section 1.2

Chapter 2

Foundation and Context

We are faced with three serious questions that must be addressed when attempt-

ing to create a legal decision support system:

1. Is it meaningful, from a jurisprudential perspective, to create a legal decision

support system?

2. Can we structure input and data in a way that makes a legal decision

support system possible?

3. Is it even ethical to create a legal decision support system?

2.1 Jurisprudential Justification

While there is some contention in the jurisprudential context as to whether law

operates in a way that can even be encoded as rules and knowledge that a com-

puter can work with [48], there is (to date) no way of proving or disproving the

possibility of constructing such systems without actually attempting to construct

them.

Admittedly, the need for compassion and humanity, and the difficulty of inter-

preting law gives rise to cases that are far beyond the capabilities of any existing

computer systems to reason about. But even though we cannot handle every

such case, it is understood that in many fields of legal practice, (particularly in

statutory domains such as taxation and traffic law, but also common law such as

contracts) legislation and precedents are well understood and the typical cases

before the courts are “routine”. In a case involving traffic law, for example, many

Page 6 – Chapter 2

common attributes can be readily identified: the blood-alcohol level of the driver,

the speed of the car, the crime committed, the experience of the driver and the

importance of a drivers licence for the driver’s livelihood. Of the thousands of

traffic cases before the courts, there might only be 100 or so different classes of

‘incidents’ and the relevant features of these are likely to be readily identifiable.

Thus, we have made this assumption that most cases are not “landmark” de-

cisions, but that much of the decision making process of legal practice is routine

and potential scope for at least partial automation. While we cannot expect a

legal decision support system to draw accurate conclusions for every case, we be-

lieve it will suffice to have the tool offer recommendations where it recognises the

case is within its scope (i.e., the tool has a conservative mode of operation, that

offers suggestions when it would be accurate and helpful). The decision maker

can use the recommendations that the tool generates as additional considerations

in an adjudication.

2.2 Structuring Input

Given this routine domain of application, it seems natural that a legal decision

support system that takes an encoded form of the facts that are currently before a

court (or the situation of a user considering legal action) and returns suggestions

that are consistent with precedents along with justifications for the suggestions

would prove to be beneficial to the legal community.

Implicit in this claim, is the assumption of the availability of such structured

datasets that encode the facts of precedents. Unfortunately, there are presently

few structured datasets available1 in the legal domain, but we do not see this as

a problem for two reasons:

1. Generating datasets is a low cost task that can be performed accurately by

relatively unskilled workers who can read the unstructured description of a

decision and identify key attributes of the relevant parties. This is cheaper

and the resultant system is likely to be more accurate than that of having

1And the structured datasets that are available tend to describe a few landmark cases, as
opposed to large datasets of routine cases that would be more useful for automatically inferring
the underlying reasoning.

Page 7 – Section 2.2

an expert manually infer the reasoning used by the decision maker (this

will be addressed further in the next chapter).

2. As the value of legal decision support systems are recognized, the legal sys-

tem is likely to respond by entering data into structured or semi-structured

formats suitable for machine processing. Efforts such as the Oasis’ LegalXML

project2 are already exploring such options.

We admit that the assumption of structured relational datasets is slightly

unrealistic. The value of a legal decision support system is such that we have

decided to maintain the assumption in order to drive the creation of such datasets

based on demand. We will explore this assumption further, and suggest some

practical solutions in Chapter 7.

2.3 Ethical Considerations

Any legal technology, by its nature, has the potential to dramatically affect the

lives of people involved in the decisions. Thus, we deviate from the technical

aspects to consider the ethical implications of what we are doing:

2.3.1 Possible Elimination of Compassion

Whenever regulation is read with a strictly literal interpretation and followed

precisely, nonsensical situations arise. Consider, for example, the ridiculous cases

of utility companies that send sternly worded letters demanding compensation

for a bill 5 cents short, or mandatory sentencing that sends a youth to jail for

shoplifting a chocolate bar. When constructing an LDSS, care has to be taken

to ensure that we give the system ‘common-sense’, or that its users are trained

to recognise that sometimes human-compassion or special circumstances demand

that precedent is ignored.

An extension of this concern is that if a legal decision support system proved

to be too successful, there might be moves to replace judges entirely in the name

of efficiency. If such a situation were to arise, there would be serious implications

for the compassion of the legal system (and also for the system to accommodate

changing social contexts).
2Project homepage at http://www.legalxml.org/

Page 8 – Section 2.3

Unfortunately, the capabilities of modern technology are often misunderstood

– if we were proposing to create a printed table that can be used to suggest

outcomes of a case there would be far less concern for its misuse. But, as a com-

puter program, there is a danger of people who do not belong to the information

and communication technology industries to overrate the intelligence of such an

LDSS.

Because there are so many exceptional cases in law, we do not believe that

these concerns are likely to materialize. No tool can be successfully applied

to every single case because of the massive (and increasingly growing) domain

over which it would have to operate. Through the fallability of the machine,

and its conservative answers (i.e., it would indicate it could not give an answer

under some circumstances), users will develop an understanding that the tool

can be used for the routine, but that it will always require a human to handle

the exceptions. In fact, it will always require a human to identify that a case is

indeed routine3. Furthermore, with careful attention to marketing the tool as a

tool, as opposed to a solution, users can be taught realistic expectations of the

capabilities of a legal decision support system: providing the benefits of low cost

advice without destroying the existing legal processes that we value.

2.3.2 Possible Prevention of Evolutionary Change

Social conditions change; while homosexuality is no longer considered a crime,

to carry a pocketknife on an airplane is becoming increasingly punishable. For

this reason, it is essential that an LDSS that draws inferences based on precedent

does not limit the ability of the legal system to adapt to the changing perceptions

and needs of the community. This concern can be addressed, in part, by placing

greater significance on more recent precedents, and by educating users in the

proper use of the system so they pay attention to the timeliness of advice of the

system. In other words, we do not believe that a legal decision support system

will prevent evolutionary change, in fact, it will empower decision makers with

a far greater understanding of how their decisions are deviating from precedent

3Even though a human is required to identify the applicability of the tool, it does not
necessarily mean that the tool is useless – a decision maker can readily recognise where the
input parameters of the LDSS do not adequately describe the case, and in those cases where the
input parameters do adequately describe it, the LDSS provides assistance in reaching consistent
and rapid decisions.

Page 9 – Section 2.3

and whether this is appropriate.

2.3.3 Possiblity of Unequal Availability and Subversion

Like virtually all technologies, a legal decision support system could be used

for devious ends. Not only can innocent parties use the strategic information

provided by an LDSS in a positive way to structure their case to maximize their

success, but also guilty parties could potentially use the same information to

subvert the legal process. This is a concern, but it is a reasonable price to pay:

1. Our modern legal system is such that every person has every opportunity

to demonstrate his or her innocence. An LDSS is perfectly within the rights

and fair use of any party. At worst, an LDSS would simply increase the

burden of proof that lies with the accuser.

2. While a guilty party could use the tool to subvert the legal process, it

seems more likely that the widespread availability of tools that can anal-

yse reasoning in precedents would assist a decision maker in recognising

this subversion and in reaching a decision that is consistent with the en-

tire established body of precedents. That is, while a guilty party might

be somewhat benefited by the information provided by an LDSS, decision

makers and innocent persons would receive at least the same benefits, but

in all likelihood, significantly more dramatic benefits.

3. A low cost LDSS can help “level the playing field” by giving both sides

the same access to information. When legal knowledge is widely available

through low cost legal information systems, there is a reduction in the

advantage that one party can gain in having the finances to afford top

lawyers.

Point 3 above addresses to the concern that an LDSS might only be available

to the wealthy. In fact, underlying this concern is one of the strongest motivations

for this work: wealthy parties can already afford the top lawyers to represent their

case so that an LDSS would do little to improve their advantage, but because

an LDSS can be built at a low cost, there is real potential for offering high-

quality advice to less wealthy parties and thereby making the legal system more

equitable.

Page 10 – Section 2.3

2.3.4 Possibility for Invasion of Privacy and Security

The concerns of privacy and security, while always important, would not be

exacerbated by the introduction of LDSSs. Precedents are freely available in

unstructured forms; converting them to structured formats, while giving due

care to existing privacy regulations is not likely to be a detriment to privacy.

Finally, the need for security – that decision makers should not be influenced by

systems that have had their precedent data tampered with – is indeed a concern,

but is somewhat alleviated by the fact that a human decision maker should use

the LDSS as a tool, and should only accept a suggestion of the LDSS when the

rationale it presents is sound and sensible. By offering legal decision support

systems to public scrutiny (and this is certainly more possible if our requirement

for transparent and verifiable internal representation is satisfied), the confidence

in the system can only improve.

2.3.5 Conclusions

Undeniably, the introduction of legal decision support systems brings to mind a

minefield of ethical considerations. While there is potential for subversion, the

benefits are such that it is still worthwhile to cautiously proceed – taking care to

educate decision makers and the general public in how to correctly interpret and

use the suggestions of the LDSS.

Page 11 – Section 2.3

Chapter 3

Related Work

Existing approaches to constructing legal expert systems fall into two broad cat-

egories: manual encoding of rules in expert systems, or automatic induction via

machine learning techniques. Manually encoded expert systems have the luxury

of being able to use expressive and verifiable internal representations, but it is an

expensive and delicate operation to produce such expert systems. In fact, man-

ually encoding knowledge into an expert system may result in a system that is

inconsistent with legal practice due to the difficulty in having experts accurately

encode their knowledge. While there have been many successful implementations

of legal expert systems [48] some of which can efficiently draw inferences from

over 10,000 rules, we have ruled out manual construction for its exorbitant costs

and focus our attention to automatic and semi-automatic means. But, while ma-

chine learning can reduce the construction cost, existing systems based on such

technologies appear to be unable to reconcile automatic construction of knowl-

edge bases with knowledge representations that suitably encode knowledge for

reasoning. The following sections explore some of these existing approaches.

3.1 Case Based Reasoning

Case based reasoning systems (such as Hypo [48]) attempt to find related cases

under the assumption that a similar case is likely to have a similar conclusion.

While such an information system certainly would benefit a lawyer in preparing

an argument, the systems do not focus on the rationale of a decision but on the

similarity between the cases, so it is difficult for a case based reasoning system to

Page 12 – Chapter 3

produce a justification for its predictions other than by analogy. Some systems

attempt to resolve this difficulty by manually inferring the principles underly-

ing the case, but this is really no more than producing an expert system with

analogical reasoning capabilities (and so is as expensive as other approaches to

manually constructing expert systems).

3.2 Attribute-Value and Propositional Learners

Propositional learners such as the ID3 and C4.5 decision tree induction algorithms

or ASSISTANT have had some success when applied in the legal domain [17].

Unfortunately, propositional rules are difficult to interpret by a lawyer without

a computer science background, and even with training, the resultant trees or

propositional expressions are still difficult to interpret. Furthermore, the output

of such algorithms are typically expressions that seek to classify cases with as few

attributes as possible, but do not adequately handle the possibility that those

attributes may not even be available at all (i.e., propositional learners do not

work satisfactorily with partial information) [47].

Modern algorithms such as C4.5 often have additional modes of operation that

output a structured set of rules more suitable for “human interpretation” [45], but

these are based on monotonic1 logics that do not have a natural correspondence

to law, and in practice we have found that they result in unwieldy rules that are

challenging to interpret.

3.3 Neural Networks, Bayesian Networks and Other

Continuous Model Fitting

Projects such as the Split-Up project [49] which applied neural networks to family

law, often achieve a high degree of success. But unfortunately, while approaches

1A monotonic logic is a logic that does not allow for tentative conclusions. For example, it is
possible to prove that 2 + 2 = 4 in the standard monotonic first order logic with the axioms of
formal arithmetic, and no additional information will nullify the proof. In contrast, we might
say that law is a non-monotonic logic, because given no information we can “prove” innocence
of an accused (i.e., the presumption of innocence), but if video evidence is presented to show
guilt, then it is necessary to revise this conclusion (in fact, the new conclusion of guilt can still
remain tentative because it may be revealed, for example, that the video was doctored).

Page 13 – Section 3.2

such as neural networks that perform model fitting over continuous variables

give very high accuracy by learning from examples and have proven successes

in disparate fields, they do not apply as successfully in a legal context. The

reasoning behind such methods is simply an adaptive non-linear function and, as

such, it is extremely difficult to generate explanations from their output, or even

to verify their correctness.

Some researchers have attempted to extract knowledge as if – then rules

from neural networks [13, 9] by analysing connection strengths and by random

sampling of outputs. Such analysis helps improve the confidence in the soundness

of a neural network, but the researchers acknowledge that a neural network still

remains a black-box and it is difficult to estimate the applicability of a network

to new cases.

3.4 Association Rules

Some work has been done towards using association rules (mined by the Apriori

algorithm [1]) as a basis for an LDSS. While this is currently work-in-progress

(and, in fact, was the initial motivation for this project [31]), it seems unlikely

that taking this approach alone is going to result in significant success. Associ-

ation rule mining finds “general associations” between properties, but does not

produce rules. A specific field in the legal domain might have several guiding

rules with many exceptions and so is guided by not only the associations be-

tween assumptions and a conclusion, but also exceptions to the associations –

because of this, association rule miners are unlikely to be a general solution to

the problem of learning the reasoning principles underlying law. Furthermore,

care must be taken to ensure that mined associations are not simply common

properties of the domain, but are indeed deciding factors. These difficulties with

interpreting association rules, and the challenge of integrating them into a formal

model suggests that association rules might be better suited as a heuristic device

as opposed to an end in itself.

Page 14 – Section 3.4

3.5 Inductive Logic Programming

Inductive logic programming (ILP) is concerned with producing pure negation-

free Prolog programs (theories in Horn clause logic) from example sets of inputs

and outputs, and usually operate in either a bottom-up approach by generalising

examples or a top-down approach specialising the empty program into a suitable

theory [34]. In the literature, there appears to be limited successful application

of ILP in the legal domain, which may be due to the monotonicity of Horn clause

logic being unsuitable for law. The simplicity of theories induced by ILP systems

in their typical domains is significant, so we have drawn from the body of work

in ILP for our research, but have adapted some of the benefits into a framework

that handles the defeasibility of law directly.

There is some existing work with non-monotonic ILP that seeks to overcome

some of the limitations of the closed world assumption and monotonicity of the

logic used within ILP. ILP approaches have been used [23, 40] to induce theories

in Reiter’s Default logic [43] – a similar strategy [33] has also been used to learn

Extended Logic programs (which represent a subset of default logic). While these

approaches are near what we are attempting to achieve, finding the extension of

a Default logic theory is an NP-complete problem so even the application of

Default logic in predicting new cases gives rise to computational problems. This

is compounded by the fact that Default logic is a form of expression that is

difficult for untrained persons to interpret [43] – we believe that our work fits

more naturally in a legal context.

Page 15 – Section 3.5

Chapter 4

Defeasible Logic

While the existing approaches described in Chapter 3 have experienced a cer-

tain degree of success, that none has received widespread acceptance is indica-

tive that they are deficient in some way. The challenge seems to be finding a

balance between having a representation for efficient reasoning and the cost of

encoding knowledge into that representation. In [43], Prakken describes several

non-monotonic logics that appear to have a more natural correspondence to legal

reasoning than other forms of formal expression. Furthermore, defeasible logic,

a form of non-monotonic reasoning invented by Donald Nute (and related to one

of the logics presented by Prakken) has a language that permits the expression

of regulations with an almost one-to-one correspondence between plain-language

expression and its encoded form [2, 20]. Having a domain expert annotate the

rules of a defeasible logic theory with plain-English expressions during a vali-

dation phase can further enhance the clarity of a defeasible logic theory to an

untrained user: the annotations can be presented to the user as an “explanation”

of the conclusion drawn from the theory.

Defeasible logic, being a non-monotonic logic, handles partial knowledge well

[43, 30], has a sceptical reasoning process [3, 5], is equivalent to or subsumes

many other non-monotonic logics [3, 6] and has an algorithm for computing its

extension in linear time and space [4, 35]. These favourable properties are im-

portant for the formalisation of legal reasoning. Law abounds in cases involving

partial knowledge (there simply is not enough time for every minute detail to

be presented), and any reasonable decision support system must act in a con-

servative and sceptical way (for it is better to give no answer than an incorrect

Page 16 – Chapter 4

Rule Explanation
r1: ⇒ ¬guilty Innocence is presumed
r2: evidence ⇒ guilty Evidence can show guilt
r3: ¬motive ¬guilty Lack of motive can suggest innocence
r4: alibi ⇒ ¬guilty An alibi can prove innocence

r4 � r3, r3 � r2, r2 � r1

Figure 4.1: Hypothetical Criminal Law Theory

answer). The computational efficiency is also important, not only for drawing

conclusions from a theory, but also because it lends itself to efficient algorithms

for the induction of theories from datasets. While the variant of defeasible logic

that we have used does not allow for meta-level reasoning about the purpose or

backing of rules, which is possible in some logics [43], the logic remains a powerful

[2, 20] and natural form of expression that is relevant for routine legal practice

and a form for which rules in a defeasible logic theory correspond to the untrained

understanding of a “rule”.

For these reasons it seems that defeasible logic would be a suitable represen-

tation for knowledge in an LDSS. The challenge that remains is the automatic

or semi-automatic creation of such knowledge from precedents. This will be ad-

dressed in Chapter 5.

In the remainder of this chapter we will present a formal explanation of de-

feasible logic. Because we are focussing our attention to a specific application of

defeasible logic, for simplicity our terminology slightly deviates from that used in

other works. More complete definitions of propositional defeasible logic appear

in [3, 5, 41].

4.1 An Example

A defeasible logic theory is a collection of rules that permit us to reason about

a set of facts, or known truths, to reach a set of defeasible conclusions. Because

multiple conflicting rules may be applicable in any given situation, a defeasible

logic theory additionally includes a relation for resolving these conflicts.

For example, consider the theory about criminal law in Figure 4.1. The theory

consists of two components:

Page 17 – Section 4.1

• a set of rules that can be used to conclude the guilt or innocence of the

defendant in the event of certain facts being presented in the court of law,

and

• an acyclic transitive1 relation (called the superiority relation) that indicates

the relative strength of each rule.

Suppose that we are given the theory of Figure 4.1, and that the set of facts

{evidence, alibi} have been presented to the court of law and are assumed true,

then we can defeasibly prove the innocence of the defendant, because:

• We note that r4 permits us to conclude ¬guilty, and

• The necessary conditions for the application of r4 hold, namely it is known

that alibi is a fact (or has been defeasibly proven true), and

• Of the remaining rules, the only one that reaches the contradictory conclu-

sion guilty and for which its necessary conditions are satisfied, is r2, but

r4 is stronger than r2 (i.e., r4 � r2) so r2 does not override the conclusion.

4.2 Formal Definition

We now formalize the ideas and terminology in the example, and present a proof

theory.

A defeasible logic theory T is a pair (R,�) where R is a finite set of rules and

� is a partially ordered2 relation defining superiority over R.

Rules are defined over literals, where a literal is either an atomic propositional

variable a or its negation, ¬a. Given a literal, p, the complement, ∼p of that

literal is defined to be a if p is of the form ¬a, and ¬a if p is of the form a.

There are two kinds of rules, defeasible rules and defeaters. Defeasible rules

can be used to defeasibly prove some conclusion, but defeaters can only be used

to prevent a conclusion being reached. Typically a third kind of rule is permitted,

strict rules, which have a more classical meaning in that they are monotonic and

1We have only denoted the relevant mappings, the actual superiority relation would in fact
be the least acyclic transitive relation containing the mappings denoted – in this case, the
transitive closure of these mappings.

2Though, in the general case, the superiority relation is simply a binary relation over the
set of rules.

Page 18 – Section 4.2

cannot be defeated. We disregard strict rules in application to the automatic

induction of defeasible theories because it is impossible to conclude a strict corre-

lation with only the partial knowledge possible with finite datasets (in any case,

strict rules can be simulated with defeasible rules that are ‘high’ in the superiority

relation such that they can rarely be defeated).

A defeasible rule is denoted by Q ⇒ p where Q is a set of literals denoting

the premises of the rule, and p is a single literal denoting the conclusion upon

application of the rule. A rule of this form can be interpreted to say that whenever

the literals in Q are known to be facts or to be defeasibly provable, then we can

defeasibly prove p (by “defeasibly”, we mean that we can only prove p tentatively,

and is subject to possible defeat by other, stronger, rules).

A defeater is a rule that is likewise denoted by Q p where Q is a set of

literals denoting the premises of the rule, and p is a single literal denoting the

counter-conclusion that can be used upon application of the rule. A rule of this

form can be interpreted to say that whenever the literals in Q are known to be

facts or to be defeasibly provable, then we can only reach a conclusion that is

consistent with p (subject to defeat by other rules); that is, we cannot prove ∼p,
but may prove p if there are other rules supporting this position, otherwise we

may reach no conclusion at all. Note that with a pair of rules of the form Q a

and Q ¬a, each at the same superiority, we can block any conclusion with

respect to a.

We define Ante(r) = Q where r is a rule of the form Q ⇒ p or Q p; that

is, Ante(r) is the set of premises or antecedents of the rule r (i.e., Ante(r) is the

left hand side of the rule).

We reason about a set of facts (of a given case) F with respect to a defeasible

theory T to reach defeasible or tentative conclusions of that particular case. A

conclusion of a defeasible theory T and facts F is conventionally a tagged literal

of one of the following forms:

• +∂p, which is intended to mean that p is defeasibly provable in T over F

• −∂p, which is intended to mean that p is not defeasibly provable in T over

F .

We define an entailment relation, T, F ` c, which indicates that c is a con-

clusion of the set of facts F with respect to theory T . The entailment relation is

Page 19 – Section 4.2

defined by the proof mechanism expounded in [3, 5], and which is briefly presented

here for completeness.

A proof within a defeasible logic theory T given a set of facts F is a finite

sequence P = 〈p1, p2, . . .〉 of tagged literals satisfying the two inference rules that

follow. P (1..i) denotes the initial part of the sequence P, of length i, and P (i)

denotes the ith element of P. Rd denotes the set of defeasible rules in R (i.e.,

those rules that are not defeaters) and R[q] denotes the set of rules in R with

conclusion q.

+∂:

If P (i+ 1) = +∂p then either

p ∈ F or

(1) ∃r ∈ Rd[p]∀q ∈ Ante(r) : +∂q ∈ P (1..i) and

(2) ∀s ∈ R[∼p] either

(a) ∃q ∈ Ante(s) : −∂q ∈ P (1..i) or

(b) ∃t ∈ Rd[p] such that

∀q ∈ Ante(t) : +∂q ∈ P (1..i) and t > s.

−∂:

If P (i+ 1) = −∂p then

p 6∈ F and

(1) ∀r ∈ Rd[p] ∃q ∈ Ante(r) : −∂q ∈ P (1..i) or

(2) ∃s ∈ R[∼p] such that

(a) ∀q ∈ Ante(s) : +∂q ∈ P (1..i) and

(b) ∀t ∈ Rd[p] either

∃q ∈ Ante(t) : −∂q ∈ P (1..i) or t 6> s.

If we consider only theories for which the set of all possible premises is disjoint

from the set of all conclusions, then it is the case that all inferences can be

performed in a single step. Because a single-step mode of operation precludes

the need for recursive evaluation of the backing of a rule (i.e., there is no need

to defeasibly prove the truth of the antecedents, beyond checking facts), we can

simplify the above inferences rules to give the following simpler proof mechanism:

+∂:

If T, F ` +∂p then

Page 20 – Section 4.2

(1) ∃r ∈ Rd[p]∀q ∈ Ante(r) : q ∈ F and

(2) ∀s ∈ R[∼p] either

(a) ∃q ∈ Ante(s) : ∼q ∈ F or

(b) ∃t ∈ Rd[p] such that

∀q ∈ Ante(t) : q ∈ F and t > s.

−∂:

If T, F ` −∂p then

(1) ∀r ∈ Rd[p] ∃q ∈ Ante(r) : ∼q ∈ F or

(2) ∃s ∈ R[∼p] such that

(a) ∀q ∈ Ante(s) : q ∈ F and

(b) ∀t ∈ Rsd[p] either

∃q ∈ Ante(t) : ∼q ∈ F or t 6> s.

Or, in plain English, we use the conclusion of the strongest of the defeasi-

ble rules that have all premises satisfied. If no such rule exists, or if there is

any defeater with the opposite conclusion that is not stronger, then we have no

conclusion.

For simplicity, we disregard the tagging, and instead represent T, F ` +∂p

as simply T, F ` p, and use T, F `?a to denote the case that both T, F ` −∂a
and T, F ` −∂¬a holds (that is, T, F `?a denotes the case that nothing can be

defeasibly proven with respect to a).

This formal definition of defeasible logic has a natural mapping to a Prolog

meta-program [36]. To a fluent Prolog programmer, this meta-program elegantly

conveys the proof theory in a far more intuitive fashion. A summary of the work

in [36] appears as the Prolog meta-program in Appendix C.

Page 21 – Section 4.2

Chapter 5

Induction of Theories

Given the apparent similarities of defeasible logic with legal expression and rea-

soning, we turn our attention to the problem of inducing a defeasible logic theory

from precedent data (i.e., a set of training examples). That is, we require an algo-

rithm that, given a training dataset of cases and their corresponding conclusions,

will produce a theory that:

• When applied to each element of the training dataset, will reach the same

conclusions as the training set, and

• When applied to an unseen case, will reach a ‘good’ conclusion.

Two results are important here; that it is possible to find a theory that de-

scribes a dataset, but that finding the optimal solution is unfortunately an NP

optimisation problem. In this chapter, we consider these theoretical challenges

and an algorithmic solution that is a compromise between theory and practice.

5.1 Theoretical Foundation

We begin with some definitions first.

We define a dataset D as a set of records d, where each d is tuple of the form

(F, c), where F is a possibly empty set of literals denoting the known truths or

facts of the particular precedent, and where c is either a literal (a or ¬a) or the

term ?a indicating that no conclusion is reached with respect to propositional

variable a. We say a dataset is consistent if every conclusion is formed from

the same propositional variable, and if for all records d1 = (F1, c1) ∈ D and

Page 22 – Chapter 5

Source Dataset

({a, b}, p)
({c, d},¬p)
({e, f, g}, p)
({a, b, c},¬p)
({a, g, h}, ?p)

A Describing Theory
r1 : a, b ⇒ p
r2 : g ⇒ ¬p

r3 : e, f, g ⇒ p
r4 : a, b, c ⇒ p
r5 : a, g, h p
r6 : a, g, h ¬p

r4 � r1, r5 � r2, r6 � r2, r3 � r2

Figure 5.1: Example Construction of a (Poor) Describing Theory

d2 = (F2, c2) ∈ D, if F1 = F2 then c1 = c2. In other words, a dataset is consistent

if no two identical cases have different conclusions. Given a consistent dataset

D we define Var(D) = a, where a is the propositional variable that appears in

every conclusion.

For convenience we will assume that all datasets are consistent. Whenever

this assumption is invalid, it can be corrected by pre-processing the dataset.

Depending on the particular context of the application this might mean deleting

the records that are causing the inconsistency, using the result from the more

recent record, or replacing all such inconsistent records with a new record of the

form (F, ?a) to indicate that given the particular facts F that are causing the

inconsistencies, we do not have any known conclusion.

It should be noted that the definition of a dataset only allows for a single

propositional variable to be used over all the conclusions. In applications where

multiple conclusions are necessary, this limitation can be trivially overcome by

processing each class of conclusions with a different dataset and repeated appli-

cation of the algorithm presented later, in Section 5.3.

We say a defeasible logic theory, T , has an accuracy of x% with respect to a

given dataset, D, if for x% of the records d = (F, c) ∈ D, it can be proven that

T, F ` c. We say a theory describes a dataset if it is 100% accurate, that is for

each record d = (F, c) ∈ D, it can be proven that T, F ` c.

Theorem 1 Given any consistent dataset D, there exists a theory that describes

the dataset.

Proof. By Construction.

Page 23 – Section 5.1

Let a = Var(D), we construct a theory T = (R,�), from rules

R = {F ⇒ c|(F, c) ∈ D ∧ c 6=?a} ∪

{F a|(F, c) ∈ D ∧ c =?a} ∪

{F ¬a|(F, c) ∈ D ∧ c =?a}

and superiority relation

�= {(r1, r2)|r1, r2 ∈ R ∧ Ante(r2) ⊂ Ante(r1)}.

This theory describes the dataset (an example of such a theory appears in Figure

5.1), for given any record r = (F, c) ∈ D, we have T, F ` c. By the reasoning

mechanism of defeasible logic, we know that only the rules in

{r|r ∈ R ∧ Ante(r) ⊆ F}
= {r|r ∈ R ∧ Ante(r) = F} ∪ {r|r ∈ R ∧ Ante(r) ⊂ F}

can be applied in the reasoning process. The dataset is consistent (by assump-

tion), and the theory has been constructed from each element of the dataset, so

we know that the theory T will contain either exactly one defeasible rule with

Ante(r) = F and conclusion c, or exactly two defeaters with Ante(r) = F which

will give conclusion ?a = c. This means that applying the rules in the left set of

the above union

{r|r ∈ R ∧ Ante(r) = F}

will give us the correct conclusion. It is clear that the rules in the right set of the

above conclusion

{r|r ∈ R ∧ Ante(r) ⊂ F}

will have no effect on this outcome, for the superiority relation defines those rules

where Ante(r) ⊂ F , to be weaker than the rules where Ante(r) = F .

In fact, it turns out that for any given dataset D, there can be many theories

that describe the dataset. We could use the theory generated by the construction

that appears in the proof of Theorem 1 for predicting new cases, this is unsatis-

fying because using such a theory becomes no more than a primitive case-based

reasoning system. Instead, we look to find the theory that describes the dataset

Page 24 – Section 5.1

and has the minimal number of rules. Because a minimal theory has few rules,

we would expect each rule to carry more significance and have greater predictive

power than might the rules of a larger theory describing the same dataset. For

this reason we expect that a minimal theory would give the best generalisation

of the dataset and would be most likely to perform well on unseen cases. Find-

ing a minimal theory also simplifies the comprehension effort required to have a

human expert verify a theory, and more closely matches our expectations that

human experts in their own practice would themselves typically avoid reasoning

with convoluted rules or on an individual case-based-reasoning approach. Un-

fortunately, though, finding the minimal theory turns out to be intractable, we

show this by transformation from the hitting set problem.

Garey and Johnson [29] report that the hitting set problem is NP-complete

(by transformation from the vertex cover problem due to Karp in 1972). The

problem is as follows:

Input Given a collection C of subsets of a finite set S, and a positive integer

k ≤ |S|

Problem Is there a subset S ′ ⊆ S with |S ′| ≤ k such that S ′ contains at least

one element from each subset in C?

Theorem 2 Given a dataset D and positive integer k′ ≤ |D|, the problem of

deciding whether there exists a theory T = (R,�) of size |R| ≤ k′ that describes

D is NP-hard. (We refer to this problem as the Describing Theory Problem.)

Proof. If we assume the existence of an algorithm for solving the describing theory

problem, we can solve the hitting set problem (SP8 in [29]) via transformation

to the inputs of such an algorithm:

• The collection of the hitting set problem can be encoded in polynomial time

to a dataset, then

• An algorithm that solves the describing theory problem can be used to

reach a decision for the hitting set problem.

The describing theory problem is therefore NP-hard, because if there exists a

polynomial-time algorithm that can solve the describing theory problem, we can

solve the hitting set problem in polynomial time, and therefore all NP-complete

Page 25 – Section 5.1

Source Collection

{p, q}
{q, r}
{p, q, r}
{r, s, t}
{p, s}

Minimal Hitting Set

{p, r}

Transformed Dataset
({p, q}, a)
({q, r}, a)

({p, q, r}, a)
({r, s, t}, a)
({p, s}, a)

(∅,¬a)

Minimal Describing Theory
p ⇒ a
r ⇒ a
∅ ⇒ ¬a

Figure 5.2: Example Construction for Proof of NP-Hardness

problems in polynomial time. The transformation we use is possible because

of a correspondence between a minimum hitting set and a minimum describing

theory.

Given a collection C of subsets of a finite set S, and a positive integer k ≤ |S|,
these inputs are encoded to a form suitable for theory induction as follows:

• Create a new propositional variable, a, not appearing in S,

• Construct a dataset

D = {(E, a)|E ∈ C ∧ E 6= ∅} ∪ {(∅,¬a)},

• Execute an algorithm that solves the describing theory problem, with input

D and k′ = k+1, if the algorithm returns “true”, then there exists a hitting

set for C of size k.

Noting the correspondence between a minimum hitting set and a minimum

describing theory, the correctness of the above encoding can be seen:

The dataset, D, of the above construction (an example appears in Figure

5.2) has several interesting properties. Any theory that describes the dataset

must contain the rule ∅ ⇒ ¬a. This is because when reasoning about the record

d = (∅,¬a) ∈ D, the only applicable rules are those with Ante(r) = ∅, and

because we need to reach conclusion ¬a given the facts F = ∅, we must have

a rule of the form ∅ ⇒ ¬a. Furthermore, any other rule in the theory will be

Page 26 – Section 5.1

stronger than the rule ∅ ⇒ ¬a and will be of the form F ⇒ a for F 6= ∅ because all

the remaining records d ∈ D\{(∅,¬a)} have the conclusion a. While it is possible

for a theory to describe the dataset with additional rules such as defeaters or rules

of the form F ⇒ ¬a for F 6= ∅, a simpler theory can be produced by eliminating

such redundant rules and for this reason a minimal theory would not contain such

rules.

Now, we note that when reasoning about some facts, F 6= ∅, with the rules

of a minimal theory Tmin = (R,�) as above, a given rule r ∈ R is applicable if

Ante(r) ⊆ F . In fact, a minimal describing theory of a dataset D is a theory

such that for each record d = (F, c) ∈ D where F 6= ∅, it holds that

∃r ∈ R | Ante(r) ⊆ F

(this property is quite close to the definition of a hitting set). Finally, by noting

that if we have a rule r = (Q ⇒ a) that applies to a record d = (F, c) ∈ D, we

can choose any element s ∈ Q to produce a new rule r′ = ({s} ⇒ a) so that it is

still the case that

Ante(r′) ⊆ F ∧ Ante(r′) 6= ∅.

Thus, if we are given a minimal theory Tmin for a dataset that has been con-

structed from a hitting set problem, we can simplify each rule (with the positive

conclusion a) in the theory Tmin to give a new theory

T ′min = (R′,�′)

so that the premise of each rule is a singleton1. This simplification neither adds

nor removes rules, so we still have a minimal theory; but by taking the union of

the premises of each rule we have a minimum hitting set

S ′ = ∪{Ante(r)|r ∈ R′}.

We see that this is indeed the case because, for each record d = (F, c) ∈ D, it

holds that

∃r ∈ R′ | Ante(r) ⊆ F

1A singleton is set with one element

Page 27 – Section 5.1

and since each Ante(r) is a singleton, this is equivalent to

∃s ∈ S ′ | s ∈ F

(i.e., S ′ is a hitting set). By the same reasoning, we can construct a minimal

describing theory from a minimum hitting set by creating a rule with singleton

premise set for each element of the hitting set (of course, in addition to the rule

∅ ⇒ ¬a).

That is, given a minimal theory Tmin , with size k′ = |R|, of such a dataset,

we can produce a minimum hitting set size,

k = S ′ = k′ − 1,

of the corresponding collection C, by selecting from the premise of each rule one

element. And likewise, we can produce a minimal theory from a minimum hitting

set. So that if there is a theory of size |R| ≤ k′ that describes the dataset, then

there will exist a hitting set of size

|S ′| ≤ k = k′ − 1

for the collection.

Theorem 3 Given a dataset D and positive integer k′ ≤ |D|, the Describing

Theory Problem is NP-complete.

Proof. The decision procedure can be solved in NP time. An algorithm is as

follows:

1. Non-deterministically, generate a theory T of size |R| ≤ k′ over the propo-

sitional variables in D.

2. For each record (F, c) ∈ D, use the linear time algorithm in [35] to check

T, F ` c.

3. If the theory T describes the dataset D, succeed.

The correctness of this algorithm can be seen immediately, for it simply checks

that the nondeterministically generated theory of Step 1 describes the dataset.

Page 28 – Section 5.1

Clearly, this algorithm runs in nondeterministic polynomial time. Given that the

decision procedure is also NP-hard (Theorem 2) we conclude that the decision

procedure is NP-complete.

While the above results pertain to a decision procedure, the problem of finding

the smallest theory that describes a dataset belongs to the class NPO (defined

in [7]), and is consequently NP-hard. These results follow immediately from the

definition of NPO, or can be proven via transformation from SP7 in [7] using a

similar mapping as that used Theorem 2.

The important consequence of these results is that it is unlikely that there is

a tractable algorithm that finds the global optimum, but that it is necessary to

use heuristics to find an approximate solution.

5.2 Inductive Logic Programming

Much of the existing work on generation of logical theories from examples is in

the context of inductive logic programming (ILP), it is therefore natural to expect

that some of the techniques of ILP could be applied to induction of defeasible

logic theories.

Inductive logic programming is concerned with producing pure Prolog pro-

grams (theories in Horn clause logic) from example sets of inputs and outputs.

It usually operates in either a bottom-up approach by generalising examples or a

top-down approach specialising the empty program into a suitable theory [34]. It

turns out that the problem of inducing theories in defeasible logic from examples

is very much related to inductive logic programming where the hypothesis space

is restricted to clauses where the body of each clause consists of only unary pred-

icates (this approach will produce a theory, but it will not be minimal because

an ILP search finds theories without considering a superiority relation and so

does not include the possibility of smaller theories that make use of a superiority

relation).

Inductive logic programming can be further categorised by their fundamental

approaches: direct generalisation, meta-queries, inverse resolution, top-down re-

finement or transformation. We have considered each approach, but have found

all of them unsuitable or lacking in some respect.

Page 29 – Section 5.2

5.2.1 Direct Generalisation from Examples

By defining the concept of least general generalisation (lgg), which forms a gen-

eralisation lattice, ILP systems are able to produce rules that generalise given

sets of examples. When a similar concept is applied to defeasible logic, we have

a bottom-up refinement process that simply computes intersections of the as-

sumptions of examples with the same conclusions. Unfortunately, finding the

intersections is related to the hitting set problem – and so this technique which

is suitable for small ILP problems is likely to be unsuitable for application to

defeasible logic.

5.2.2 Meta-queries

The concept of a meta-query – a second order template that specifies the type of

patterns to be discovered [24] – as used in ILP initially appears to be a particularly

attractive approach to mining defeasible logic theories. Given that legal texts and

decisions are likely to have similar patterns of formulation, by identifying these

patterns of formulation it is possible to simplify a model search into that of a

parameter search over the second-order template.

However, defeasible logic already has a very high correspondence with legal

expression [3] and so it would be expected that virtually all theories would be

possible for a given dataset, and that limiting a search with meta-queries would be

unduly restrictive or would require meta-queries to be so general that no benefit

is gained from the approach. The most relevant deciding factor in whether a

particular theory is likely to represent a realistic legal framework (beyond the

simple constraint that circular rules would likely be considered undesirable in

practical situations) is likely to be the simplicity of the theory (though this is

always going to be a subjective measure).

5.2.3 Inverse Resolution

Inverse resolution is an approach to inductive logic programming whereby unifi-

cation is performed “in reverse” – replacing atoms that appear in examples with

variables. This approach applies in the context of inductive logic programming

over binary (or higher arity) predicates and so is of limited benefit to inducing de-

feasible theories (which is roughly equivalent to ILP over only unary predicates).

Page 30 – Section 5.2

set program P , the program containing the empty clause
while P has not yet converged

read a new example, e
if the conclusion of e is inconsistent with P

with the refinement operator, ρ(c),
specialise P , or add exceptions to P

if e has no conclusion, and P gives a conclusion for e
with the refinement operator, ρ(c),

add defeaters to P , specialise P , or simplify the priority relation
output P

Figure 5.3: Simplified Model Inference System

5.2.4 Top Down Refinement

In the process of top-down search or refinement, the empty theory is initially

assumed, which is then refined to match the example data [34]. A refinement

operator ρ(c) is defined over the clauses of a theory, and this is typically used in

a refinement process such as the model inference system by Shapiro [46], sum-

marised in [28], and refined here in Figure 5.3 for defeasible logics.

The particular refinement operator ρ(c) is carefully chosen for efficiency, and

to ensure that the refinement process converges on some solution [38] (that is,

it results in “identification in the limit”). In our research, the top-down re-

finement approach proved to offer the most promising results. Unfortunately,

a literal translation of the above algorithm results in extremely poor execution

and theories due to the mismatch between the montonicity of Prolog and the

nonmonotonicity of defeasible logic. In Section 5.3, a new algorithm that draws

from this approach is presented.

5.2.5 Problem Transformation

Some ILP systems such as LINUS [34] begin by transforming the problem to

a format suitable for a propositional learner, running a propositional learning

algorithm, and transforming the result back into a logic program. While this is

applicable to a monotonic logic such as Horn clause logic, it does not apply to

Page 31 – Section 5.2

set theory, T = (∅, ∅)
do

invoke Rule Search Routine (Figure 5.5), to find a new rule r
if r 6= nil

set T , to T + r
while r 6= nil

Figure 5.4: Defeasible Theory Search Algorithm

inducing defeasible theories for the same reasons that propositional learners are

unsuitable for inducing knowledge in LDSSs (see Section 3.2).

5.3 A New Algorithm: HeRO

Given the inherent difficulty of the induction problem for defeasible logic, it is

necessary to take a pragmatic approach in seeking an algorithm that produces

“reasonable” theories in “reasonable” time. A new algorithm, HeRO2, that uses a

greedy, branch-and-bound, best-first search strategy, suits these criteria (a good

description of these techniques in a general sense appears in [32]), producing

meaningful output on realistic data.

The algorithm starts with an empty theory and iteratively adds rules to the

theory in a greedy fashion so as to improve the accuracy of the theory. With every

iteration the search space of possible rules is explored using a branch and bound

algorithm to select the rule with the highest gain. This greedy mode of operation

is not unrealistic because rules that offer a high degree of predictive power should

naturally offer the greatest degree of improvement in accuracy of the theory (and

indeed, practice confirms that this is the case or at least a suitable approximation

of reality). Pseudocode for this high-level operation of the algorithm is detailed

in Figure 5.4.

Each invocation of the outer loop invokes the rule search routine to select the

next rule (and the position of the rule in the superiority relation) to add to the

current theory. We now turn our attention to this algorithm.

2Heuristic Rule Optimisation

Page 32 – Section 5.3

If a rule r = (Q ⇒ c) or r = (Q c) is added at some position in the

superiority relation � of a theory T = (R,�), to give a new theory T ′, we

define the gain, gainT,r,T ′ , of that rule to be the difference between the number of

records, d = (F, c) ∈ D, for which T ′, F ` c and the number of records for which

T, F ` c. That is, the gain of a rule is the increase in the accuracy of a theory

that is a result of adding the rule to the theory.

This definition of gain can be equivalently stated in terms of “incorrect con-

clusions that are corrected by adding the new rule”, and “correct conclusions

that are blocked by adding the new rule”, or formally:

gainT,r,T ′ =#{(F, c) ∈ D | T ′, F ` c}

−#{(F, c) ∈ D | T, F ` c}

=#{(F, c) ∈ D | T ′, F ` c ∧ T, F 6` c}

−#{(F, c) ∈ D | T ′, F 6` c ∧ T, F ` c}

We derive an upper bound for gainT,r,T ′ by noting that if the rule r is refined by

adding literals to the premises to make the rule more specific, then the number of

“incorrect conclusions that are corrected by adding the new rule” must decrease

because a subset (but no more) of these “corrections” will still be applicable

after refining the rule, and the number of “correct conclusions that are blocked by

adding the new rule” will also decrease, for the same reason: only a subset of these

“blocks” will still be applicable after refining the rule. Under ideal circumstances,

the refinement of a rule would result in no reduction of “corrections”, but would

eliminate all “blocking”. It is this ideal condition that leads us to the upper

bound, maxgainT,r,T ′ for any refinement of the rule r:

maxgainT,r,T ′ = #{(F, c) ∈ D|T ′, F ` c ∧ T, F 6` c}

These expressions for gainT,r,T ′ and maxgainT,r,T ′ can be further refined if required

to support a legal practice that is known to evolve over time. Instead of simply

counting records with the # operator, it is possible to compute a weighted sum,

with the contribution of each record inversely proportional to the age of the record

or proportional to some user-specified parameter of the case’s importance. This

approach places greater emphasis on more recent conclusions, and allows theories

to be generated for datasets that may contain evolutionary change.

Page 33 – Section 5.3

Now, by either best-first or simply breadth-first search, we can explore the

search space by maintaining a variable that holds the best rule found so far,

and only exploring those branches of the search space where the upper bound,

maxgainT,r,T ′ , is strictly greater than the value of gainT,r,T ′ for bestgain. The

bestgain can then be added to the current theory T (if it would result in a positive

gain), before repeating the search again for the next iteration (or halting if no

more rules exist that result in positive gain).

By only considering totally ordered superiority relations, it is possible to ob-

tain an efficient implementation of this algorithm. For each position in the total

order, the weaker rules are immediately applied to the dataset to give tentative

conclusions and the records in the dataset to which stronger rules apply are dis-

carded (because if we added a rule at this position in the superiority relation it

would have no effect on the conclusions of records for which one of the stronger

rules is applicable). This initial processing allows the gainT,r,T ′ and maxgainT,r,T ′

to be efficiently computed in a single pass over the dataset. Furthermore, addi-

tional performance gains are possible by associating with each set of premises,

the records in the dataset that are applicable (and maintaining this set during

each set-based computation). Restricting the algorithm to only totally ordered

superiority relations does not appear to result in poorer theories, and in fact,

produces a theory that is easier for a human expert to comprehend since such a

theory represents an ordered list of rules, as opposed to a digraph of rules that

is more difficult to interpret and display.

Pseudocode for an implementation of the greedy rule search appears in Figure

5.5. A best-first search is shown, but this can be trivially modified to a breadth-

first search by replacing the priority queue with a standard queue. Because it is

possible to compute the accuracy gain of a rule r = (Q ⇒ p) and its negation

r′ = (Q ⇒ ¬p) in a single pass, we compute both simultaneously for a given

premise set Q, and return the conclusion, gain and maxgain of the rule that has

greater accuracy gain.

While HeRO can be implemented in languages such as Prolog, a significantly

more efficient implementation is possible by using hash-based data structures

available in imperative languages in order to improve the speed of set based opera-

tions (particularly set membership). The source code for an efficient breadth-first

C# implementation of HeRO appears in Appendix A.

Page 34 – Section 5.3

set best gain so far, bg ← 0
set best premises, bp← nil

set best conclusion, bc← nil

foreach position in the totally ordered superiority relation
set weaker ←the existing rules that are weaker than the current position
set stronger ←the existing rules that are stronger than the current position
set priority queue, q ← ∅ using q enqueue ∅ with priority 0
while q 6= ∅ set current premise p = q.dequeue()

compute preferred conclusion, c, of p,
gain, g, of p, and
maxgain, mg, of p

if g > bg
set bg ← g
set bp← p
set bc← c

if mg > bg
foreach refinement p′ of p

q.enqueue(p′)
if bg > 0

return (bg ⇒ c) and current position
else

return nil

Figure 5.5: Rule Search Routine

Page 35 – Section 5.3

Chapter 6

Experimental Results

In order to evaluate HeRO, we have used the algorithm on datasets that have

been generated from known theories, and we have also compared the algorithm

with other approaches in the literature.

6.1 HeRO on Known Theories

HeRO can be evaluated by noting how faithful a theory induced by HeRO is,

when compared to the known theory underlying the dataset. We do this by man-

ually creating a theory, randomly generating a dataset of 1000 records (including

“noise” variables) that is consistent with the theory, and running HeRO on the

dataset. HeRO gives impressively accurate results on such theories, and executes

on all datasets within 0.5 seconds. We analyse an important outcome on each

common pattern identified in [31]:

6.1.1 Simple Exception

Source Theory

r1: a ⇒ p

r2: a, b ⇒ ¬p
r3: a, c ¬p
r4: e ⇒ p

r2 � r1, r3 � r1

Induced Theory

r1: a ⇒ p

r2: a, b ⇒ ¬p
r3: e ⇒ p

r4: a, b ¬p
r5: a, c ¬p
r5 � r4, r4 � r3, r3 � r2, r2 � r1

Page 36 – Chapter 6

Though the induced theory above is not identical to the source theory, there is

an extremely high correspondence (and the two theories are logically equivalent).

The only significant difference is the additional rule r4 that appears in the induced

theory – this rule compensates for the fact that the superiority relation of the

source theory is a partial order, because HeRO considers only totally ordered

superiority relations.

6.1.2 Aggregate vs Separate

Source Theory

r1: a ⇒ p

r2: b ⇒ p

∅

Induced Theory

r1: a ⇒ p

r2: b ⇒ p

r2 � r1

The problem of separating aggregate rules (a, b ⇒ p) from separate rules

(a ⇒ p and b ⇒ p) was identified as a challenge in [31], and yet even if a and b

appear together extremely often, HeRO operates perfectly.

6.1.3 General vs Specific

Source Theory

r1: a ⇒ p

r2: a, b ⇒ p

r5 � r4

Induced Theory

r1: a ⇒ p

∅

The problem of distinguishing between a general (a⇒ p) and a specific (a, b⇒
p) rule is relevant because in some contexts the more specific (and complex) rule

is preferred, and in others the more general rule is preferred [31]. This problem

contradicts our assumption that a minimal theory is best, and we believe that

contexts requiring the more specific rule are somewhat atypical. In the source

theory above, the second rule is in fact redundant, and HeRO has correctly

identified the minimal equivalent theory. If, for example, r1 in the source theory

was never exercised – that b always occurred with a – then it might be argued

that we should not generalize to cases in which b does not occur with a. On real

Page 37 – Section 6.1

datasets, we have not encountered this problem, but it is possible to alter HeRO

to accommodate this requirement.

6.1.4 Conclusions

HeRO faithfully generates theories consistent with the underlying theory. While

the generated theory may not be identical or optimal, the differences are due to

the assumption that the superiority relation is totally ordered – an assumption

that does not significantly reduce comprehensibility of the induced theories. Fur-

thermore, even though the induction process was executing over 1000 records,

runtimes are more than satisfactory1.

6.2 HeRO Versus Other Approaches

In this section we compare the HeRO algorithm with two other approaches to

machine learning in the legal domain.

6.2.1 DefGen

The approach used by DefGen [8] follows the intent of original work by Governa-

tori and Stranieri [31]. This work is motivated by the syntactic similarities, and

the certain degree of semantic overlap between mined association rules and defea-

sible logic theories. The intent of their work is that by post-processing an efficient

association rule-mining algorithm, a defeasible logic theory could be generated.

Even though HeRO also follows from the work by Governatori and Stranieiri [31],

an association rule based approach seemed inappropriate for HeRO because it is

difficult to use association rules to capture the exceptions or “disassociations”,

and because exhaustively post-processing the output of an association rule min-

ing algorithm appears to be at least as difficult as generating a theory directly

from the dataset (and possibly more difficult because association rules lose too

much of the information about the original dataset).

DefGen was implemented to identify common patterns of regulation formu-

lation within the output of a fast Apriori [1] mining algorithm. The algorithm

1Curiously enough, it was faster to induce the theories than to generate the original datasets!
This was because the dataset generation was performed in Prolog, but the induction was with
a C# implementation.

Page 38 – Section 6.2

Algorithm DefGen DefGen HeRO HeRO
Minimum support 5 10
Minimum confidence 100 75
Target theory size 8 no limit
Accuracy 87% 84% 90% 97%
Rules generated 46 55 8 16
Runtime 0.4s 0.5s 2s 20s

Table 6.1: Comparison of Results for Credit Application Dataset

was tested against the Japanese Credit Application dataset, available as part

of the UCI Machine Learning Repository2. The dataset contains 125 records

describing 10 attributes (in total, 27 attributes after “binning” the continuous

attributes into discrete categories) of credit applicants and the outcome of their

applications. Avery reports that different parameters of minimum support and

confidence give differently sized theories (a trade-off between theory size and ac-

curacy), but recommends two parameters that offer a good balance. In contrast,

HeRO uses only a single parameter that specifies the size of the theory to be

generated before halting.

A comparison of the algorithms appears in Table 6.1. Clearly, while DefGen

has faster runtimes, HeRO offers far superior accuracy and smaller theories within

sufficient run times. Even though both of these techniques are still in their

infancy, HeRO is showing much promise.

6.2.2 Neural Networks and Association Rules

In [9], Bench-Capon justifies the development of legal information systems such

as that discussed in this thesis, and then trains neural networks on existing cases.

Indeed, Bench-Capon faces the same problem of black box mode of operation we

discussed in Section 3.3. He admits that a trained neural network is difficult to

comprehensively verify, and it is clear that a neural network offers little justifi-

cation for its answers – much work is necessary to explain to non-technical law

workers how to interpret and use the output of a neural network.

Bench-Capon used synthetic datasets describing a fictional welfare benefits

scheme paid to pensioners that suffer expenses visiting a spouse in hospital. The

2Freely Available at http://www.ics.uci.edu/~mlearn/MLRepository.html

Page 39 – Section 6.2

decision of whether or to pay the pensioner is subject to the following conditions:

1. The person should be of pensionable age (60 for a woman, 65 for a man);

2. The person should have paid contributions in four out of the last five rele-

vant contribution years;

3. The person should be a spouse of the patient;

4. The person should not be absent from the UK;

5. The person should not have capital resources amounting to £30,000; and

6. If the relative is an in-patient the hospital should be within a certain dis-

tance: if an out-patient, beyond that distance.

These six conditions immediately translate into 12 features (age, gender, 5

contributions, spouse, absence, capital resources, in-patient, distance), which

form the dataset along with 52 additional “noise” features that have no influ-

ence on the conclusion.

The neural networks that Bench-Capon trained on 2400 such records obtained

the following success rates [9]:

One hidden layer: 99.25%

Two hidden layers: 98.90%

Three hidden layers: 98.75%

Even though this accuracy is quite high, it is of course difficult to judge how

faithfully the conditions for payment are encoded within the network, and so it

is hard to rationalize the use of such technology in legal practice if alternatives

exist.

In a later work, Bench-Capon [10] analysed the same datasets using associa-

tion rule mining algorithm, while this work did not result in any specific strategy

for predicting or describing future cases, we follow the methodology and justifica-

tion used to transform the continuous features of the welfare benefit dataset into

propositional variables. When applying HeRO to this transformed dataset, the

following theory with accuracy 99.8% is produced (in order of superiority, from

weakest to strongest):

Page 40 – Section 6.2

⇒ grant

distance short , inpatient ⇒ ¬grant

¬spouse ⇒ ¬grant

absent ⇒ ¬grant

age lt 60 ⇒ ¬grant

capital gt 3000 ⇒ ¬grant

It is trivial to alter the algorithm to prefer scepticism3 when two rules have

equal accuracy gain; doing so results in an even simpler theory with the same

accuracy (in order of superiority, from weakest to strongest):

⇒ ¬grant

spouse, ¬absent , ¬age lt 60 , ¬capital gt 3000 ⇒ grant

distance short , inpatient ⇒ ¬grant

Clearly, this theory has a very high correspondence to the original conditions

– it would be easy for a non-technical law worker to understand this theory (and,

in fact, could be manually annotated by a domain expert so that plain-English

explanations for conclusions can be presented to the user when the theory is used).

Even if we ignore the fact that defeasible logic allows such clearly interpreted

theories to be generated, the high accuracy (99.8%) is competitive with the results

produced by Bench-Capon’s neural networks.

A positive outcome of Bench-Capon’s work with Apriori [10] in this context is

an approach to identifying and eliminating noise variables. Even though HeRO

works satisfactorily on the 2400 records and 64 features of this dataset, by pre-

processing the dataset to eliminate noise variables, the scalability of HeRO could

be dramatically improved further.

6.2.3 Conclusions

It is quite clear that HeRO has competitive (or greater) accuracy when compared

to existing approaches in the legal domain that solve similar problems. But, by

inducing defeasible logic theories, HeRO generates a far more transparent knowl-

edge representation and so is significantly more applicable to legal domains. Of

3This is simply a matter of setting the conclusion to ¬p in the event of a rule that has equal
gain in both its positive and negative form.

Page 41 – Section 6.2

course, HeRO can never achieve guarantees of 100% accuracy, but the theories

that the algorithm generates have demonstrated correspondences with the under-

lying theories and thus we can expect the theories induced in realistic situations

to accurately reflect the underlying reasoning in precedents.

Page 42 – Section 6.2

Chapter 7

Application of HeRO

7.1 The Knowledge Discovery Process

While the technical approaches to induction from examples is a key part of knowl-

edge discovery, the full process consists of much more than simply applying algo-

rithms to data [27, 26]. An important consideration in producing legal decision

support systems is the creation of datasets that might be used for “training”. To

do so, we must work within the structured framework of a knowledge discovery

process typically performed in 5 steps [26]:

1. Selection (selecting the relevant data to mine)

2. Preprocessing (the process of cleansing the data – removing unnecessary

data, contradictory data and data that may slow down queries)

3. Transformation (translating the data to a suitable format for a data mining

algorithm)

4. Extraction (extracting the patterns from the data)

5. Interpretation (evaluating the patterns for correctness and interpreting the

“discovered” knowledge)

Large legal databases such as AUSTLII1 are freely available, but do not have

a structured data-model – outcomes of cases are stored in plain-English texts.

1Accessible at http://www.austlii.edu.au/

Page 43 – Chapter 7

Throughout this project, we have focussed on the extraction stage of the knowl-

edge discovery process and have assumed the existence of structured datasets for

which selection, preprocessing and a certain degree of the transformation stages

have already been completed. We now turn our attention to generating these

datasets.

7.2 Dataset Generation

As discussed in Section 2.1, one way of structuring the dataset generation (the

selection, preprocessing and transformation) would be to have an expert identify

as many attributes as possible that might have a bearing on the outcome of

a case, and employ low cost labour to identify and enter these attributes that

occur within the precedent cases. Costs remain low because each case need only

be entered once, and a suitable form based interface can facilitate and encourage

the entry of data at the resolution of each case.

Selecting attributes to record might ordinarily be a difficult problem, but

because the defeasible logic induction algorithm allows values to be marked as

unknown, it is possible to add additional attributes to the dataset at a later

date. Retrospectively recording a new attribute as unknown for the precedents

of prior cases, and entering the attribute for each case that occurs henceforward,

evolutionary changes in the factors involved in decisions for future cases can be

supported (e.g., the use of DNA evidence would not have even been conceived 30

years ago).

Unfortunately, manually encoding cases to a prescribed set of attributes is a

risky activity because it may not be clear whether enough attributes for induc-

tion have been selected up front. After data-entry, if execution of HeRO gives

a theory that is dramatically different from established practice (e.g., reasoning

with attributes such as hair colour where this is a completely unrelated attribute)

then it is likely that the precedents were described with the incorrect attributes.

Unfortunately, the only recourse in such a situation would be to return to the

original cases and enter the new attributes from scratch. This risk can be miti-

gated by careful selection of attributes, and sampling the induced theories early

on in the data entry process.

A more effective approach might be to describe every case in full detail, ac-

Page 44 – Section 7.2

cording to a grammar that is both machine readable and sufficiently descriptive

to capture all attributes considered by the court. This is an extremely challenging

problem, but some approximations of the ideal vision are possible, such as the

works presented in [15, 14, 42, 37]. An example of how XML might be used to

represent a case appears in Figure 7.1.

The attraction of using a semi-structured representation such as XML [16] is

three-fold:

1. The notation is flexible enough to allow cases to be comprehensively de-

scribed (as can be clearly seen in Figure 7.1),

2. The underlying schema (in the case of XML, it is likely to be XML Schema

[25]) can be readily extended to allow the description of new attributes that

are brought to the courts attention, and

3. In addition to being readily understood by human beings, semi-structured

notations such as XML can be processed and queried by machine.

Given a set of precedents that are comprehensively described in a notation

such as XML, an expert or knowledge engineer can generate a structured dataset

for HeRO by writing a query for each attribute. Although we still require an

expert to identify attributes that could potentially be considered in a decision, a

semi-structured representation allows attributes to be redefined or added at any

time, without requiring the precedents to be manually inspected again. Given

that HeRO can induce a theory in seconds – it feasible to incorporate the in-

duction algorithm and the attribute query and definition language into a single

unified environment that allows an expert to define attributes and immediately

gauge the improvement in the accuracy or the clarity of the induced theory and

accordingly refine the queries. Possible approaches to specifying these queries in-

clude the use of XML query languages such as SQL/XML, XMLQuery or XPath,

and the use of description logics.

7.2.1 XML Query Languages

The world wide web consortium (W3C), has specified two languages for query-

ing XML documents: XPath [11] which offers a basic syntax for addressing and

querying nodes in an XML document, and XQuery [12] that extends the power

Page 45 – Section 7.2

<case id="A113-22-182-7783">

<person id="joey" type="defendant">

<name>Joey Jo-Jo Junior Shabadoo</name>

<citizen>Australia</citizen>

<gender>Male</gender>

<age>20</age>

<prior-convictions>

<ref id="B19-67-21-5573"/>

</prior-convictions>

...

</person>

<accident third-party-damage="none">

<driver person="joey" passengers="none">

<vehicle>

...

</vehicle>

</driver>

<evidence type="blood-alcohol-sample" disputed="no">

<measure type="alcohol">0.13</measure>

</evidence>

...

</accident>

<judgement type="guilty">

<licence-loss duration="3 months"/>

</judgement>

...

</case>

Figure 7.1: Sample XML document describing a drink-driving accident

Page 46 – Section 7.2

of XPath with a powerful query language that bears resemblance to SQL. Addi-

tionally, direct extensions to the ISO/IEC 9075 standard for SQL (SQL-99) are

currently under investigation by the SQLX workgroup2. While XQuery, XPath2

and SQL/XML are still progressing through the standardisation process, proto-

types from major vendors such as Oracle and Microsoft are already available.

Even if XML is not chosen as a representation for semi-structured data, many

other tree or graph based semi-structured representations could be mapped into

XML and then queried using these powerful languages.

XPath2 offers a simple syntax that resembles file-system path names, but

also has powerful querying features including universal and existential quantifiers

(some and every) that allow simple joins. Using XPath2, an expert might define

a dataset in a manner similar to Figure 7.2.

In lieu of a suitable development environment, it is possible to conveniently

generate datasets with existing technology via an XSLT template (XSLT is an

XML transformation language that is based on the XPath query language). An

example of such a template appears in Appendix B.

A deficiency present in this XPath approach is the mismatch between the

two-valued nature of the XPath logical expressions and the three-valued nature

of defeasible logic (it is possible in defeasible logic to have no conclusion with

respect to a particular variable). Of course, HeRO will work perfectly and induce

a theory over a dataset created from queries performed using XPath, but it might

be desirable to use a three valued logic so that unknown values are explicitly

marked as unknown. This could be resolved by directly modifying the semantics

of XPath to create a new language, or using two expressions for each variable

– the first expression defines the truth value of the variable, and the second

expression defines whether the value of the variable is in fact unknown (i.e., with

two Boolean expressions we can define up to four truth-values of a variable).

7.2.2 Description Logics

Description logics are subsets of first order logic with desirable computability

properties that make them useful for knowledge representation and reasoning.

Research into description logics has developed a broad range of logics with well-

understood complexity trade-offs – this body of literature is sufficiently cata-

2Homepage at http://www.sqlx.org/

Page 47 – Section 7.2

Attribute XPath2 Expression
Male person[attribute::type = ’defendant’]/gender = ’Male’

Youth person[attribute::type = ’defendant’]/age < 21

PreviousIncident some $prior in person/prior-convictions/ref/attribute::id

satisfies (/precedents/case[attribute::id =

$prior]/judgement/attribute::type = ’guilty’)

Drunk .//evidence/measure[attribute::type = ’alcohol’] > 0.05

VeryDrunk .//evidence/measure[attribute::type = ’alcohol’] > 0.15

CausedDeath (some $passenger in accident/passenger satisfies

$passenger/injury = ’death’) or (some $onlooker in

accident/pedestrian satisfies $onlooker/injury = ’death’)

Figure 7.2: Example Dataset Definition using XPath2

logued that selecting a description logic for a given application is a matter of

selecting desired ‘features’ of the logic, selecting a computational upper bound

(i.e., from the entire spectrum of polynomial to undecidable) and then using the

appropriate tableaux decision algorithm in the literature for that logic [19, 22].

Description logics can be applied to law by either direct representation of the

precedents in a description logic, or indirectly, by storing precedents in a semi-

structured format such as XML and reasoning about this data with a description

logic. While the former approach is an interesting possibility that is consistent

with other efforts that have created knowledge bases on a description logic foun-

dation [39], we have not explored this in detail because of the challenge involved in

presenting advanced logical formalisms to relatively unskilled data entry clerks.

The latter option of using XML proved to be more pragmatic considering our

time constraints – with this approach we assumed a direct mapping from XML

nodes to description logic individuals and use the roles in description logic to con-

nect nodes in accordance with the tree-structure of the XML document3. With

this mapping, formulas in description logic bear extremely close resemblance to

XPath2 expressions, but offers dramatically greater expressive powers.

Calvanese et al [18] have also explored the correspondence between XML and

3In order to more closely match the tree-oriented tableaux algorithms usually used in descrip-
tion logics, references in trees such as the prior-convictions element of Figure 7.1 are removed by
replacing the reference with the entire sub-tree that can be found at the target of the reference.

Page 48 – Section 7.2

description logics, and though we have chosen a different mapping from XML,

we follow their reasoning in selecting the description logic DL that provides

similar functionality to that of XPath2. Even though the decision problem for

DL is EXPTIME-hard, we have used the mapping from description logics to

propositional dynamic logics of [21] and implemented a variant of the EXPTIME

tableaux for propositional dynamic logics due to Pratt [44] to find very satisfac-

tory performance on all the formulas we considered. The fact that worst-case

constructions for these logics are rather atypical, and that description logics are

regularly applied in large scale ontological databases gives confidence that legal

reasoning with description logics will generally give responsive results.

Whilst many XPath2 expressions closely correspond to DL formulae, the

power of using DL lies in the ability to provide more general ‘common sense’

knowledge. For example, if we have asserted the formula

FEMALE u ∃CHILD .
= MOTHER

to the knowledge base, then the system knows that a particular person is a

mother whether it has been explicitly specified that the person is a mother or if

it is known that the person is female and has a child. An assertion such as this

also gives the system the knowledge that if a person is a mother, than the person

must be female – the kind of ‘common sense’ knowledge that can make an expert

system appear truly intelligent4 and simplify the task of data entry for users.

This power also allows information about a case to be supplied in flexible ways,

or even to allow the partial specification of a case to be supplied – for example,

stating that somebody is a mother merely implies the existence of children and

does not require the children to be explicitly stated. An example of how DL
might be used to describe a dataset appears in Figure 7.3.

An additional advantage of description logic is that provability of these ex-

pressions is effectively a three-valued truth notion that corresponds closely to

that of defeasible logics:

4Admittedly, this particular example that a mother is female is hardly an insightful ob-
servation, but description logics such as DL offer a decidable mechanism that can derive any
conclusion that logically follows from a knowledge base (including expressions that require rea-
soning about quantifiers). To a human being, most of these derivations would appear ‘obvious’,
but that is exactly the point of giving machines ‘common sense’ and can be very difficult to
achieve using other formalisms.

Page 49 – Section 7.2

Attribute DL Expression
Male OneDefendant u

(= 1)PERSON.(∃TY PE.Defendant u ∀GENDER.Male)

Youth OneDefendant u
(= 1)PERSON.(∃TY PE.Defendant u (≤ 21)AGE)

PreviousIncident OneDefendant u (= 1)PERSON.(
∃PRIORCONV ICTION.GuiltyConviction)

Drunk ∃EV IDENCE.((> 5)CMEASURE.(∃TY PE.Alcohol))

VeryDrunk ∃EV IDENCE.((> 15)CMEASURE.(∃TY PE.Alcohol))

CausedDeath ∃ACCIDENT.(∃PASSENGER.(∃INJURY.Death) t
∃PEDESTRIAN.(∃INJURY.Death))

Background Knowledge
OneDefendant

.
= (= 1)PERSON.(∃TY PE.Defendant)

GuiltyConviction
.
= ∃JUDGEMENT.(∃TY PE.Guilty)

Figure 7.3: Example Dataset Definition using DL

• True if the expression can be proved,

• False if the negation of the expression can be proved, and

• Unknown if neither the expression nor its negation can be proved.

The above truth classifications allow a dataset to be generated with a single

expression that accurately and naturally captures the decision support system’s

knowledge of a particular attribute.

7.3 Discussion

Throughout the development of HeRO, we have assumed the existence of struc-

tured datasets. While this assumption does hold under some domains, in realistic

applications it is necessary to take a more complete view of the knowledge dis-

covery process. Semi-structured data representation and query languages such as

XPath or expressive description logics such as DL offer significant flexibility in

producing input datasets for HeRO. A semi-structured approach not only allows

Page 50 – Section 7.3

for meaningful application and development for HeRO, but opens the opportu-

nity for more advanced legal knowledge processing such as semantic querying of

precedents or the use of algorithms other than HeRO.

In this project, we have only presented a cursory glance of a possible ap-

proach to the knowledge discovery process. An obvious extension of this work

is in the development of an integrated knowledge discovery environment – that

allows a knowledge engineer to define grammars (e.g., in XML Schema), encode

precedents, submit queries, analyse reasoning with HeRO and build interfaces for

end-user interaction. Careful attention to usability and to interfaces that allow

for flexible and evolving interaction is necessary, but it is a straightforward pro-

gression from this work to a tool that allows for powerful encoding, reasoning

and querying.

Page 51 – Section 7.3

Chapter 8

Future Work

Clearly HeRO, and the framework of a knowledge discovery process that we out-

lined, shows significant promise for further development to a commercial product.

An extension of some of the theoretical groundwork of this thesis would also lead

to benefits to other domains of academic interest such as ILP.

8.1 HeRO as an Algorithm for ILP

Given the partial inspiration we drew from the inductive logic programming (ILP)

community in creating HeRO, it is worthwhile to further explore the correspon-

dences between Horn clause logic and defeasible logic that we might offer new

techniques for ILP. The similarity between the defeasible logic theory minimiza-

tion problem and ILP with unary predicates is one such indication of this potential

for correspondence. Antoniou et al [6] have demonstrated that defeasible logic

subsumes logic programming without negation as failure, and so our algorithm

might provide new approaches for the ILP community and an improvement over

existing attempts at nonmonotonic ILP.

Drawing on the parallel with ILP over unary predicates and comparing this

with full ILP, it might be worthwhile exploring the development of quantified

defeasible logics, how these might further extend the expressiveness of defeasi-

ble logic in a legal context, and whether it is worth sacrificing computational

efficiency for increased expressiveness.

Other extensions include the development of extensions that allow reasoning

in multiple steps (i.e., a justification that involves multiple sub-conclusions) or

Page 52 – Chapter 8

with background knowledge. We have disregarded this because simple strategies

to solve these problems are well known and understood in the ILP community [34]

– these techniques can be directly applied in the same way when using HeRO. A

more advanced approach might automatically infer sub-conclusions – this would

require modifications to the algorithm and a significant amount of additional

research.

8.2 HeRO over Continuous Variables

Like many other approaches to machine learning, our algorithm only works with

truth-valued attributes. This is not a serious problem, for it is possible to turn a

discrete domain into a set of attributes by converting each value of the domain to a

new truth-valued attribute, and turn a continuous domain into a set of attributes

by selecting discrete ranges and again creating new truth-valued attributes for the

ranges. Other algorithms such as C4.5 [45] handle continuous domains and finite

domains directly, negating the need for a knowledge engineer to select suitable

ranges at the right level of granularity or with the right thresholds. Techniques

such as those used in C4.5 that select the best threshold with lowest entropy

might be applicable to HeRO, and is a worthwhile avenue for further exploratory

work.

8.3 Development of HeRO as a Product

In order to turn HeRO into a product suitable for industrial use, several imple-

mentation concerns need to be further addressed:

8.3.1 Scalability

While we have found HeRO to offer very satisfactory performance and indications

suggest that the algorithm is reasonably scalable to moderate databases, before

risking significant sums of money on commercial development, a more thorough

analysis of the particular demands of a working LDSS is necessary to ensure that

the runtime performance is suitable. Even in the face of poor scalability, it should

be relatively straightforward to use the techniques briefly mentioned in Section

Page 53 – Section 8.2

6.2.2 to identify and eliminate noise attributes and thereby reduce the size of

the dataset processed by HeRO (the complexity of the algorithm, as it stands, is

primarily in the number of attributes as opposed to the number of records).

8.3.2 User Interface

In order to encourage the use of the LDSS by the public or decision makers, it is

necessary to provide an interface that does not make overwhelming use of formal

notation, and that allows the interactive exploration of the reasoning behind the

conclusions that the LDSS reaches. A comprehensive survey of the significant

body of work in user interfaces for expert systems, as it applies to the legal

domain, appears in [48]. Options include a conversational style of interactions

(whereby users can ask the user interface, “Why?”, to explore the details of the

rationale), graph-based representations that display the rules in an argument and

how they support each other, and collapsible trees that allow the user to drill-

down into the structure of the mechanical reasoning. We have already suggested

that an expert can annotate rules with “natural language” explanations to allow

for the development of friendly forms of interaction, but adapting the established

techniques of creating interfaces for expert systems was primarily considered out

of scope of this project, to date.

Since the success of the LDSS relies on the quality of data entry, it is also

necessary to undergo research to development a flexible interface that allows ac-

curate, consistent and rapid description of cases at a level of simplicity suitable

for relatively untrained data entry clerks. This interface may be a simple case

of guided generation of an XML document by filling in templates that are auto-

matically formed from XML Schemas (similar to the technique used in Microsoft

Visual Studio .NET).

Therefore, we see that further work is necessary to experiment with combina-

tions of formal notation, plain English explanations or even graphical representa-

tions that reduce the comprehension effort and make users feel comfortable. But,

even before this work begins it is absolutely critical to mitigate some of the risks

of this kind of development through market research that identifies the needs and

expectations of users and anticipate their likely response to the tool. Even though

the approach presented in this thesis is intended to be comparatively low cost,

some investment is still necessary to bring the technology to fruition. Feasibility

Page 54 – Section 8.3

research is therefore a responsible use of investor funds, and user profiling that

would be a result of these studies is only going to improve the quality and the

likelihood of acceptance of the product.

8.3.3 Integrated Knowledge Discovery Environments

Not only is it necessary to pay attention to the interface for end-users, it is also

important to develop a powerful and integrated environment to assist knowledge

engineers and domain experts encode knowledge. This environment would need

to incorporate:

• A schema/grammar design tool, for specifying the semi-structured repre-

sentation and the user interfaces that data-entry clerks interact with when

encoding precedent cases,

• A facility for creating queries and maintaining a ‘common-sense’ knowledge

base,

• An end-user GUI designer for specifying a user interface that users can sup-

ply factual information about a case, or even an interview-style questioning

process,

• A front end for HeRO that allows a knowledge engineer to select attributes,

induce theories, and examine the generated rules,

• A rule annotation tool that allows a domain expert to add plain-English

explanations to defeasible logic rules,

• A visualization tool that supports multidimensional analysis of precedent

cases and of evolutionary change within these precedents,

• An update wizard that provides support for quickly evaluating and updat-

ing the state of the knowledge base in the face of evolutionary changes that

demand alterations to annotations and queries,

• A deployment wizard that ‘compiles’ the legal decision support system’s

design into a format suitable for deploying to legal workers.

Page 55 – Section 8.3

Implementing each of these tools should be a reasonably straightforward task

– the major challenge is in providing an interface that integrates these features to

maximise the ability of the knowledge engineer to design effective legal decision

support systems.

8.3.4 Field Experiments

Finally, while our experiment has included real and synthetic datasets, we have

not had the time to actually explore the application of HeRO through the entire

knowledge discovery process, in a real setting. In experimentally applying HeRO

in such settings, the algorithm can be further “tweaked” with pragmatic ends in

mind.

Another motivation for field experimentation is the need to further refine the

processes of defining schema for precedent cases, and entering these cases. The

challenge is in permitting enough flexibility to comprehensively describe every

case, while simultaneously ensuring that the semantics are sufficiently well defined

(and that the system has enough common-sense to reason about the schema) so

that it is not necessary to analyse each case in isolation to extract the value of

an attribute. An overly flexible schema is virtually impossible to reason with

(the extreme of this being a schema for plain-English unstructured data), but on

the other hand an overly restrictive schema is easy to reason with but makes it

difficult to capture a full description of the precedents. Field experimentation is

the key to finding a suitable balance between the two extremes.

Page 56 – Section 8.3

Chapter 9

Conclusions

The lack of success in the development of intelligent legal decision support systems

provides an exciting opportunity for commercialisation, and a dire warning of the

challenges inherent in the domain. An analysis reveals that there does not appear

to be any specific reason why legal decision support systems cannot be made,

and moreover, there does not appear to be any strong reason why legal decision

support systems should not be made (provided we do so in cautious steps). This

leads us to some surprise at the limited successes of such information systems.

But, by examining the existing approaches to constructing LDSSs with a fresh

perspective, we see two common failings:

1. Expensive, manual construction methods, or

2. Poor knowledge representations.

Defeasible logic would appear to resolve both of these issues, provided that

we have an algorithm for automatic induction of theories. While the theoretical

treatment of such an algorithm reveals that the underlying problem belongs to the

class of NP optimisation problems and therefore likely to be intractable, inductive

logic programming has managed to successfully apply heuristics to give “good

enough” theories in “good enough” runtimes. We have applied and extended

some of these techniques to create a new algorithm, HeRO that has extremely

impressive performance in terms of both runtimes and accuracy.

In the long term, work remains in integrating the algorithm into a knowledge

discovery suite and in refining the techniques for representing and processing the

Page 57 – Chapter 9

semi-structured representations that give an LDSS the flexibility and ‘intelligence’

to provide meaningful answers in broad legal domains.

Fortunately, there is no indication that any of this future work is insurmount-

able. Given the demand for this kind of technology, the potential applications of

HeRO are extremely encouraging and are tremendously worthwhile subjects of

further research and development.

Page 58 – Chapter 9

Bibliography

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining

association rules. In Michael Stonebraker and Joseph Hellerstein, editors,

Readings in Database Systems, chapter 7, pages 580–592. Morgan Kaufmann

Publishers, 3rd edition, 1998.

[2] Grigoris Antoniou, David Billington, Guido Governatori, and Michael Ma-

her. On the modelling and analysis of regulations. In Proceedings of the 10th

Australasian Conference on Information Systems, pages 20–29, 1999.

[3] Grigoris Antoniou, David Billington, Guido Governatori, and Michael Ma-

her. A flexible framework for defeasible logics. In AAAI/IAAI, pages 405–

410, 2000.

[4] Grigoris Antoniou, David Billington, Guido Governatori, and Michael Ma-

her. Representation results for defeasible logic. ACM Transactions on Com-

putational Logic, 2(2):255–287, April 2001.

[5] Grigoris Antoniou, David Billington, Guido Governatori, Michael Maher,

and Andrew Rock. A family of defeasible reasoning logics and its imple-

mentation. In Proceedings of the 14th European Conference on Artificial

Intelligence, Amsterdam, 2000. IOS Press.

[6] Grigoris Antoniou, Michael Maher, and David Billington. Defeasible logic

versus logic programming without negation as failure. Journal of Logic Pro-

gramming, 42(1):47–57, January 2000.

[7] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggio Kann, Al-

berto Marchetti-Spaccamela, and Marco Protasi. Complexity and Approx-

imation: Combinatorial Optimization Problems and their Approximability

Page 59 – Bibliography

Properties, chapter Appendix B, page 426. Springer-Verlag, 1999. See also

http://www.nada.kth.se/ viggo/problemlist/.

[8] John Avery, Andrew Stranieri, Guido Governatori, and John Zeleznikow.

The identification of defeasible rule sets from databases using association

rules. Submitted to The Fourteenth Australasian Database Conference.

[9] Trevor Bench-Capon. Neural networks and open texture. In Proceedings

of the Fourth International Conference on Artificial Intelligence and Law.

ACM Press, 1993.

[10] Trevor Bench-Capon, Frans Coenen, and Paul Leng. An experiment in dis-

covering association rules in the legal domain. In Proceedings of the Eleventh

International Workshop on Database and Expert Systems Applications, pages

1056–1060, Los Alamitos, California, 2000. IEEE Computer Society.

[11] Anders Berglund, Scott Boag, Don Chamberlin, Mary Fernandez, Michael

Kay, Jonathan Robie, and Jérôme Siméon. XML path language (XPath)

2.0. http://www.w3c.org/TR/2002/WD-xpath20-20020816, August 2002.

W3C Working Draft.

[12] Scott Boag, Don Chamberlin, Mary Fernandez, MichaelDaniela Florescu,

Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML query language.

http://www.w3.org/TR/2002/WD-xquery-20020816/, August 2002. W3C

Working Draft.

[13] Laurent Bochereau, Danièle Bourcier, and Paul Bourgine. Extracting legal

knowledge by means of a multilayer neural network: Application to mu-

nicipal jurisprudence. In The Third International Conference on Artificial

Intelligence and Law, pages 288–296. ACM Press, 1991.

[14] Alexander Boer, Rinke Hoekstra, Radboud Winkels, Tom van Engers, and

Frederik Willaert. Proposal for a dutch legal xml standard. In Proceedings

of the eGOV2002 Conference: State of the Art and Perspectives. Springer

Verlag, 2002.

[15] Karl Branting. A generative model of narrative cases. In The Seventh In-

ternational Conference on Artificial Intelligence and Law, pages 1–8, 1999.

Page 60 – Bibliography

[16] Tim Bray, Jean Paoli, Michael Sperberg-McQueen, and Eve Maler. Extensi-

ble markup language (XML) 1.0 (second edition). http://www.w3.org/TR/

REC-xml, October 2000. W3C Working Draft.

[17] Stefanie Brüninghaus and Kevin Ashley. Toward adding knowledge to learn-

ing algorithms for indexing legal cases. In The Seventh International Con-

ference on Artificial Intelligence and Law, pages 9–17, 1999.

[18] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Represent-

ing and reasoning on xml documents: A description logic approach. Journal

of Logic and Computation, 9(3):295–318, 1999.

[19] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele

Nardi. Reasoning in expressive description logics. In Alan Robinson and

Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 1581–

1634. Elsevier Science Publishers, 2001.

[20] Michael Covington. Logical control of an elevator with defeasible logic. IEEE

Transactions on Automatic Control, 45(7):1347–1349, 2000.

[21] Giuseppe De Giacomo. Decidability of Class-based Knowledge Representa-

tion Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica,

Università di Roma “La Sapienza”, 1995.

[22] Francesco Donini, Maurizio Lenzerinie, Daniele Nardi, and Andrea Schaerf.

Reasoning in description logics. In Gerhard Brewka, editor, Principles of

Knowledge Representation and Reasoning, pages 193–238. CLSI Publica-

tions, 1996.

[23] Béatrice Duval and Pascal Nicolas. Learning default theories. In Anthony

Hunter and Simon Parsons, editors, ECSQARU, number 1638 in LNCS,

pages 148–159, London, 1999. Springer.

[24] Sašo Džeroski. Inductive logic programming and knowledge discovery in

databases. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhr Smyth,

and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and

Data Mining, pages 117–152. AAAI Press/The MIT Press, 1996.

Page 61 – Bibliography

[25] David Fallside. XML Schema part 0: Primer. http://www.w3c.org/TR/

xmlschema-0/, May 2001. W3C Recommendation.

[26] Usama Fayyad, Gregory Piatetsky-Shapiro, and Smyth. The KDD process

for extracting useful knowledge from volumes of data. Communications of

the ACM, November 1996.

[27] William Frawley, Gregory Piatetsky-Shapiro, and Christopher Matheus.

Knowledge discovery in databases: An overview. AI Magazine, 13(3):57–

70, 1992.

[28] Peter Gammie. COMP9417 project: Shapiro’s model inference system.

http://www.cse.unsw.edu.au/ cs9417ml/MIS/doc/html/top.html, Novem-

ber 2001.

[29] Michael Garey and David Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness, chapter Appendix A, page 222. W. H.

Freeman and Company, 1979.

[30] Matthew Ginsberg. AI and nonmonotonic reasoning. In Dov Gabbay,

Christopher Hogger, and John Robinson, editors, Handbook of Logic in Ar-

tificial Intelligence and Logic Programming, volume 3. Oxford University

Press, 1993.

[31] Guido Governatori and Andrew Stranieri. Towards the application of as-

sociation rules for defeasible rule discovery. In Bart Verheij, Arno Lodder,

Ronald Loui, and Antoinette Muntjewerff, editors, Frontiers in Artificial

Intelligence and Applications, volume 70. IOS Press, 2001. Proceedings of

JURIX 2001.

[32] David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Min-

ing. MIT Press, 2001.

[33] Katsumi Inoue and Yoshimitsu Kudoh. Learning extended logic programs.

In Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence, volume 1, pages 176–181. Morgan Kaufmann, 1997.

[34] Nada Lavrǎc and Sažo Džeroski. Inductive Logic Programming: Techniques

and Applications. Ellis Horwood, New York, 1994.

Page 62 – Bibliography

[35] Michael Maher. Propositional defeasible logic has linear complexity. Theory

and Practice of Logic Programming, 1(6):691–711, November 2001.

[36] Michael Maher and Guido Governatori. A semantic decomposition of defea-

sible logics. In Proceedings of American National Conference on Artificial

Intelligence, pages 299–305. AAAI/MIT Press, 1999.

[37] Marie-Francine Moens, Caroline Uyttendaele, and Jos Dumortier. Abstract-

ing of legal cases: The SALOMON experience. In The Sixth International

Conference on Artificial Intelligence and Law, pages 114–122, 1997.

[38] Stephen Muggleton. Inductive Acquisition of Expert Knowledge. Turing

Institute Press, 1990.

[39] Daniele Nardi and Ronald Brachman. An introduction to description logics.

In Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,

and Peter Patel-Schneider, editors, The Description Logic Handbook, pages

47–100. Cambridge University Press, 2002.

[40] Pascal Nicolas and Béatrice Duval. Representation of incomplete knowl-

edge by induction of default theories. In Thomas Eiter, Wolfgang Faber,

and Miroslaw Truszczyŕiski, editors, Logic Programming and Nonmonotonic

Reasoning, number 2173 in LNAI, pages 160–172. Springer, 2001.

[41] Donald Nute. Defeasible logic. In Dov Gabbay, Christopher Hogger, and

John Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic

Programming, volume 3. Oxford University Press, 1993.

[42] Daniel Poulin, Guy Huard, and Alain Lavoie. The other formalization of

law: SGML modelling and tagging. In The Sixth International Conference

on Artificial Intelligence and Law, pages 82–88, 1997.

[43] Henry Prakken. Logical Tools for Modelling Legal Argument. Kluwer Aca-

demic Publishers, 1997.

[44] Vaughan Pratt. A practical decision method for propositional dynamic logic:

Preliminary report. In Conference Record of the Tenth Annual ACM Sym-

posium on Theory of Computing, pages 326–337. ACM Press, 1978.

Page 63 – Bibliography

[45] John Quinlan. C4.5: programs for machine learning. Morgan Kaufmann,

San Mateo, California, 1993.

[46] Ehud Shapiro. Algorithmic Program Debugging. PhD thesis, Yale University,

1982. Printed as part of ACM Distinguished Dissertations Series, 1983.

[47] Sebastian Thrun et al. The MONK’s problems: A performance comparison

of different learning algorithms. Technical Report CMU-CS-91-197, Carnegie

Mellon University, 1991.

[48] John Zeleznikow and Dan Hunter. Building Intelligent Legal Information

Systems. Computer/Law Series. Kluwer Law and Taxation Publishers, 1994.

[49] John Zeleznikow and Andrew Stranieri. Knowledge discovery in the split up

project. In The Sixth International Conference on Artificial Intelligence and

Law, 1997.

Page 64 – Bibliography

Appendix A

C# Implementation of HeRO

The HeRO algorithm has been implemented in the Microsoft .NET programming

language, C#. The project consists of the following files:

1. Home.cs

The main entry point of the implementation, including the functionality

required to parse a comma separated value (CSV) dataset.

2. Literal.cs

A C# mapping of our definition of literal that appears in Section 4.2.

3. Record.cs

A C# mapping of a record as per the formal definition that appears in

Section 5.1.

4. Rule.cs

A C# mapping of a defeasible logic rule (as defined in Section 4.2), including

the functionality required to compute the accuracy gain of the rule (as per

Section 5.3).

5. Theory.cs

A C# mapping of a theory (as defined in Section 4.2) and the core of the

HeRO algorithm.

The source for each of these files appears throughout the remainder of this

appendix (in the same order as above).

Page 65 – Appendix A

A.1 Home.cs

using System;

using System.IO;

using System.Collections;

namespace DssInduce

{

/// <summary>

/// This class is the main entry point of the application.

/// </summary>

class Home

{

/// <summary>

/// The collection of training records.

/// </summary>

static ArrayList dataset;

/// <summary>

/// A description of each attribute (including the conclusion), in the same

/// order as attributes that appear in the dataset.

/// </summary>

P
age

66
–

A
p
p

en
d
ix

A
,

H
om

e.cs

static string[] titles;

/// <summary>

/// The name of the attribute that is the conclusion of each record.

/// </summary>

static string conclusionKey;

/// <summary>

/// The main entry point for the application. Reads the datafile, and induces

/// a theory.

/// </summary>

[STAThread]

static void Main(string[] args)

{

string conclusion = "p";

ReadDataset(@"c:\honours\dataset.csv", conclusion);

Theory theory = new Theory(titles, conclusionKey, dataset);

theory.GenerateTheory(30);

theory.DumpToConsole(); // show the generated theory

Console.ReadLine(); // wait for user confirmation, before exiting

}

/// <summary>

P
age

67
–

A
p
p

en
d
ix

A
,

H
om

e.cs

/// Reads a comma-separated data file, and populates the dataset with

/// <c>Record</c>s for each object.

/// </summary>

/// <param name="fileName">The name of the file to read.</param>

/// <param name="conclusion">The attribute to use as the conclusion of

/// each record.</param>

static void ReadDataset(string fileName, string conclusion)

{

conclusionKey = conclusion;

TextReader input = File.OpenText(fileName);

char[] split = new char[] {’,’};

titles = input.ReadLine().Split(split);

dataset = new ArrayList();

string line;

while ((line = input.ReadLine()) != null)

{

dataset.Add(new Record(titles, line.Split(split), conclusion));

}

input.Close();

}

}

}

P
age

68
–

A
p
p

en
d
ix

A
,

H
om

e.cs

A.2 Literal.cs

using System;

using System.Collections;

namespace DssInduce

{

/// <summary>

/// An instance of <c>Literal</c> corresponds to the usage of literals within

/// the core of the thesis. A literal is either an atomic propositional variable

/// or its negation and is used to represent the truth value of an attribute in

/// rules and in records.

/// </summary>

public class Literal

{

/// <summary>

/// A cache of positive literals -- avoids having to construct thousands of

/// identical <c>Literal</c> objects.

/// </summary>

static Hashtable literalsPositive = new Hashtable();

/// <summary>

P
age

69
–

A
p
p

en
d
ix

A
,

L
iteral.cs

/// A cache of negative literals -- avoids having to construct thousands of

/// identical <c>Literal</c> objects.

/// </summary>

static Hashtable literalsNegative = new Hashtable();

/// <summary>

/// Basically a Factory Pattern -- instead of constructing thousands of

/// identical <c>Literal</c>s, we cache and reuse previously created literals.

/// This gives measurable performance and memory benefits.

/// </summary>

/// <param name="name">The name of the atom.</param>

/// <param name="isPositive">Whether the literal is to be the atom (true), or

/// its negation (false).</param>

/// <returns></returns>

public static Literal getLiteral(String name, bool isPositive)

{

if (isPositive)

{

Literal literal = (Literal)literalsPositive[name];

if (literal == null)

literalsPositive[name] = literal = new Literal(name, true);

return literal;

}

P
age

70
–

A
p
p

en
d
ix

A
,

L
iteral.cs

else

{

Literal literal = (Literal)literalsNegative[name];

if (literal == null)

literalsNegative[name] = literal = new Literal(name, false);

return literal;

}

}

/// <summary>

/// The name of the atom underlying the literal.

/// </summary>

string name;

/// <summary>

/// Whether the literal represents the truth value of the atom (true) or

/// of its negation (false)

/// </summary>

bool isPositive;

public Literal(String name, bool isPositive)

{

P
age

71
–

A
p
p

en
d
ix

A
,

L
iteral.cs

this.name = name;

this.isPositive = isPositive;

}

// Pass through properties ---

public bool Positive

{

get

{

return isPositive;

}

}

public string Name

{

get

{

return name;

}

}

/// <summary>

P
age

72
–

A
p
p

en
d
ix

A
,

L
iteral.cs

/// We override equality based on either:

/// <list type="bullet">

/// <item>Object identity (since we’ve cached most instances,

/// we’re working with canonical versions of objects,

/// and this test should usually be very quick), or</item>

/// <item>Value equality (for the sake of completeness).</item>

/// </list>

/// </summary>

public override bool Equals(Object obj)

{

if (this == obj)

return true;

if (obj.GetType() != this.GetType())

return false;

Literal other = (Literal)obj;

return this.name.Equals(other.name) && this.isPositive == other.isPositive;

}

/// <summary>

/// We override <c>GetHashCode</c>, for the obvious performance benefits of

/// hash based data-access.

/// </summary>

/// <returns></returns>

P
age

73
–

A
p
p

en
d
ix

A
,

L
iteral.cs

public override int GetHashCode()

{

return isPositive ? name.GetHashCode() : -name.GetHashCode();

}

public override string ToString()

{

return isPositive ? name : "-" + name;

}

}

}

A.3 Record.cs

using System;

using System.Collections;

namespace DssInduce

{

/// <summary>

/// An instance of <c>Record</c> corresponds exactly to the theoretical concept

/// of a record in the thesis.

P
age

74
–

A
p
p

en
d
ix

A
,

R
ecord

.cs

/// </summary>

public class Record

{

/// <summary>

/// Allows fast access to the literal corresponding to a particular attribute.

/// </summary>

Hashtable dataset;

/// <summary>

/// Used as a hash-based set to tell whether a given <c>Literal</c> is

/// present in the <c>Record</c>

/// </summary>

Hashtable lookups;

/// <summary>

/// The attribute that is the <c>Record</c>’s conclusion.

/// </summary>

string conclusionKey;

/// <summary>

/// The value of the conclusion as it appears in the dataset.

/// </summary>

P
age

75
–

A
p
p

en
d
ix

A
,

R
ecord

.cs

Literal conclusion;

/// <summary>

/// An annotation used by the induction algorithm. This variable is used

/// as a placeholder for the conclusion that can be derived for this record

/// by the current theory.

/// </summary>

Literal derivedConclusion;

public Record(string[] titles, string[] record, string conclusionKey)

{

// populate the instance variables

this.conclusionKey = conclusionKey;

dataset = new Hashtable(titles.Length);

lookups = new Hashtable(titles.Length);

for (int i = 0; i<titles.Length; i++)

{

if (record[i] != Theory.Nothing)

{

Literal literal = Literal.getLiteral(titles[i], record[i] == Theory.True);

dataset[titles[i]] = literal;

lookups[literal] = literal;

}

P
age

76
–

A
p
p

en
d
ix

A
,

R
ecord

.cs

}

conclusion = (Literal)dataset[conclusionKey];

}

/// <summary>

/// Resets the annotations to no conclusion.

/// </summary>

public void Reset()

{

derivedConclusion = null;

}

/// <summary>

/// Checks if the supplied literal appears in the facts of the record.

/// </summary>

/// <param name="literal">The literal that might be present in the facts.</param>

/// <returns><c>true</c>, if the literal is present.</returns>

public bool HasLiteral(Literal literal)

{

return lookups[literal]!=null;

}

/// <summary>

P
age

77
–

A
p
p

en
d
ix

A
,

R
ecord

.cs

/// This property hides the details of the particular atom of the conclusion

/// but simply concerns itself with the truth value of the conclusion.

/// </summary>

public bool DerivedConclusion

{

get

{

return derivedConclusion.Positive;

}

set

{

derivedConclusion = Literal.getLiteral(conclusionKey, value);

}

}

/// <summary>

/// This property indicates whether the <c>DerivedConclusion</c> property

/// is set or not.

/// </summary>

public bool DerivedSet

{

get

P
age

78
–

A
p
p

en
d
ix

A
,

R
ecord

.cs

{

return derivedConclusion != null;

}

set

{

if (!value)

derivedConclusion = null;

}

}

// Pass through properties ---

public bool ActualConclusion

{

get

{

return conclusion.Positive;

}

}

public bool ActualSet

{

P
age

79
–

A
p
p

en
d
ix

A
,

R
ecord

.cs

get

{

return conclusion != null;

}

}

}

}

A.4 Rule.cs

using System;

using System.Collections;

using System.Text;

namespace DssInduce

{

/// <summary>

/// This class represents a rule in a theory, and candidate rules for inclusion

/// into a theory.

/// </summary>

public class Rule

{

P
age

80
–

A
p
p

en
d
ix

A
,

R
u
le.cs

/// <summary>

/// The list of literals that form the antecedent of the rule.

/// </summary>

ArrayList guard;

/// <summary>

/// A list of records to which the rule is applicable (used for performance

/// reasons).

/// </summary>

ArrayList records;

/// <summary>

/// Used as a hash-based set to determine whether the rule applies to a

/// particular record. (ie. the set-based representation of the

/// <c>records</c> instance variable.

/// </summary>

Hashtable appliesTo;

/// <summary>

/// The names of the atoms that appear in the guard/antecedent of the rule.

/// </summary>

Hashtable names;

P
age

81
–

A
p
p

en
d
ix

A
,

R
u
le.cs

/// <summary>

/// Whether the conclusion of the rule is positive (true) or negative (false).

/// </summary>

bool conclusion;

/// <summary>

/// Whether the rule is a defeater (true) or simply a defeasible rule (false).

/// </summary>

bool isDefeater;

/// <summary>

/// The gain to the accuracy of the theory, that is given by adding this rule.

/// </summary>

int gain;

/// <summary>

/// The name of the (lexicographically) greatest atom that occurs in the

/// antecedent. This attribute is used to ensure that we cannot refine

/// both of a=>p and b=>p into a,b=>p. (ie. this variable eliminates repeats

/// from the search space, and does not destroy the algorithm’s correctness).

/// </summary>

string maxGuard;

P
age

82
–

A
p
p

en
d
ix

A
,

R
u
le.cs

/// <summary>

/// Initialises the rule.

/// </summary>

/// <param name="guard">The list of literals that form the guard/antecedent

/// of the rule.</param>

/// <param name="conclusion">Whether the rule is positive or negative.</param>

/// <param name="records">A list of records that is a superset of the records

/// that the rule applies to.</param>

public Rule(ArrayList guard, bool conclusion, ArrayList records)

{

// set up the instance variables.

this.guard = guard;

this.conclusion = conclusion;

this.records = new ArrayList();

this.appliesTo = new Hashtable();

if (guard.Count > 0)

maxGuard = ((Literal)guard[guard.Count - 1]).Name;

else

maxGuard = null;

names = new Hashtable();

foreach (Literal a in guard)

names[a.Name] = a.Name;

P
age

83
–

A
p
p

en
d
ix

A
,

R
u
le.cs

// work out which records are applicable to this rule

foreach (Record r in records)

{

foreach (Literal a in guard)

{

if (!r.HasLiteral(a))

goto NotPresent;

}

//Add the record to the set

this.records.Add(r);

appliesTo[r] = r;

NotPresent:

continue;

}

}

// Pass through properties ---

public bool Conclusion

{

get

P
age

84
–

A
p
p

en
d
ix

A
,

R
u
le.cs

{

return conclusion;

}

set

{

conclusion = value;

}

}

public int Gain

{

get

{

return gain;

}

set

{

gain = value;

}

}

P
age

85
–

A
p
p

en
d
ix

A
,

R
u
le.cs

public bool IsDefeater

{

get

{

return isDefeater;

}

set

{

isDefeater = value;

}

}

/// <summary>

/// Determines whether the rule is applicable to a given record

/// </summary>

/// <param name="record">The record for which the rule might be applicable.</param>

/// <returns><c>true</c>, if the rule is applicable to the record.</returns>

public bool AppliesTo(Record record)

{

// "lookup" the set.

return appliesTo[record] == record;

}

P
age

86
–

A
p
p

en
d
ix

A
,

R
u
le.cs

/// <summary>

/// Annotates each rule that the record applies to, with an annotation that is

/// consistent with this rule’s conclusion.

/// </summary>

public void Apply()

{

foreach (Record r in records)

{

if (isDefeater)

{

if (r.DerivedSet && r.DerivedConclusion != conclusion)

r.DerivedSet = false;

}

else

r.DerivedConclusion = conclusion;

}

}

/// <summary>

/// Computes the gain in accuracy that is due to this rule.

/// </summary>

/// <param name="best">The gain of the rule.</param>

P
age

87
–

A
p
p

en
d
ix

A
,

R
u
le.cs

/// <param name="bound">An upper bound on the gain of any refinements (via

/// <c>GetChildren</c>) of this rule.</param>

/// <param name="winningConclusion">The conclusion that lead to best gain.</param>

/// <param name="isDefeater">Whether the best gain was acheived by a

/// defeater.</param>

public void ComputeGain(out int best, out int bound, out bool winningConclusion, out bool isDefeater)

{

int trueGain = 0;

int trueGainMax = 0;

int trueDefeaterGain = 0;

int trueDefeaterGainMax = 0;

int falseGain = 0;

int falseGainMax = 0;

int falseDefeaterGain = 0;

int falseDefeaterGainMax = 0;

// Compute the score, as per the thesis

foreach (Record r in records)

{

if (!r.DerivedSet)

{

if (!r.ActualSet)

{

trueGain--;

P
age

88
–

A
p
p

en
d
ix

A
,

R
u
le.cs

falseGain--;

}

else if (r.ActualConclusion)

{

trueGain++;

trueGainMax++;

}

else

{

falseGain++;

falseGainMax++;

}

}

else

{

bool derivedConclusion = r.DerivedConclusion;

if (!r.ActualSet)

{

if (derivedConclusion)

{

falseDefeaterGain++;

falseDefeaterGainMax++;

}

P
age

89
–

A
p
p

en
d
ix

A
,

R
u
le.cs

else

{

trueDefeaterGain++;

trueDefeaterGainMax++;

}

}

else

{

bool actualConclusion = r.ActualConclusion;

if (derivedConclusion && actualConclusion)

{

falseGain--;

falseDefeaterGain--;

}

else if (derivedConclusion && !actualConclusion)

{

falseGain++;

falseGainMax++;

}

else if (!derivedConclusion && actualConclusion)

{

trueGain++;

trueGainMax++;

P
age

90
–

A
p
p

en
d
ix

A
,

R
u
le.cs

}

else //(!derivedConclusion && !actualConclusion)

{

trueGain--;

trueDefeaterGain--;

}

}

}

}

// Now that we’ve computed the score, work out which conclusion gives the

// best gain.

best = Math.Max(Math.Max(trueGain, falseGain),

Math.Max(trueDefeaterGain, falseDefeaterGain));

bound = Math.Max(Math.Max(trueGainMax, falseGainMax),

Math.Max(trueDefeaterGainMax, falseDefeaterGainMax));

if (trueGain == best)

{

winningConclusion = true;

isDefeater = false;

}

else if (falseGain == best)

{

P
age

91
–

A
p
p

en
d
ix

A
,

R
u
le.cs

winningConclusion = false;

isDefeater = false;

}

else if (trueDefeaterGain == best)

{

winningConclusion = true;

isDefeater = true;

}

else //if (falseDefeaterGain == best)

{

winningConclusion = false;

isDefeater = true;

}

}

/// <summary>

/// Finds all refinements of the current rule

/// </summary>

/// <param name="titles">The set of propositional attributes that can be used

/// to extend the guard/antecedent.</param>

/// <param name="conclusionKey">The conclusion of the rule (so that the

/// conclusion is not added as an guard/antecedent of any refinement.</param>

/// <returns>A list of new rules, that represent the refinements of the

P
age

92
–

A
p
p

en
d
ix

A
,

R
u
le.cs

/// current rule.</returns>

public ArrayList GetChildren(string[] titles, string conclusionKey)

{

ArrayList children = new ArrayList();

foreach (string s in titles)

{

if (s.CompareTo(maxGuard) > 0 && s != conclusionKey && names[s] == null)

{

Literal yes = Literal.getLiteral(s, true);

ArrayList yesList = new ArrayList(guard);

yesList.Add(yes);

children.Add(new Rule(yesList, true, records));

Literal no = Literal.getLiteral(s, false);

ArrayList noList = new ArrayList(guard);

noList.Add(no);

children.Add(new Rule(noList, true, records));

}

}

return children;

}

public override string ToString()

{

P
age

93
–

A
p
p

en
d
ix

A
,

R
u
le.cs

StringBuilder sb = new StringBuilder();

sb.Append("[");

sb.Append(gain.ToString().PadLeft(3, ’ ’));

sb.Append("] ");

bool first = true;

foreach (Literal a in guard)

if (!first)

sb.Append(", ").Append(a);

else

{

first = false;

sb.Append(a);

}

if (isDefeater)

sb.Append(" ~> ");

else

sb.Append(" => ");

sb.Append(conclusion);

return sb.ToString();

}

}

}

P
age

94
–

A
p
p

en
d
ix

A
,

R
u
le.cs

A.5 Theory.cs

using System;

using System.Collections;

namespace DssInduce

{

/// <summary>

/// A <c>Theory</c> is a collection of rules that describe a dataset.

/// This class includes the core of the HeRO algorithm.

/// </summary>

public class Theory

{

// Simple, global, constants ---

public static readonly string True = "true";

public static readonly string False = "false";

public static readonly string Nothing = "";

/// <summary>

/// The current list of rules in the theory (a list of <c>Rule</c>s).

/// </summary>

P
age

95
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

ArrayList rules;

/// <summary>

/// The training dataset (a list of <c>Record</c>s).

/// </summary>

ArrayList dataset;

/// <summary>

/// The queue of rules to be considered in the search.

/// </summary>

Queue queue;

/// <summary>

/// The names of the propositional attributes that appear in the dataset.

/// </summary>

string[] titles;

/// <summary>

/// The name of the attribute that is the conclusion of the dataset.

/// </summary>

string conclusionKey;

public Theory(string[] titles, string conclusionKey, ArrayList dataset)

P
age

96
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

{

rules = new ArrayList();

this.dataset = dataset;

this.titles = titles;

this.conclusionKey = conclusionKey;

}

/// <summary>

/// Induces a theory of (up to) a given size.

/// </summary>

/// <param name="size">The target size of the theory (the algorithm halts

/// after <c>size</c> rules are generated).</param>

public void GenerateTheory(int size)

{

for (int i=0; i<size; i++)

{

Rule next;

int pivot;

ChooseRule(out next, out pivot);

if (next == null)

break;

rules.Insert(pivot, next);

}

P
age

97
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

}

/// <summary>

/// Selects the rule with teh best gain to add to the theory.

/// </summary>

/// <param name="found">The new rule to add.</param>

/// <param name="rulePivot">The pivot -- the position in the totally ordered

/// superiority relation that the rule should be added.</param>

public void ChooseRule(out Rule found, out int rulePivot)

{

int best = 0;

found = null;

bool conclusion = false;

bool isDefeater = false;

rulePivot = 0;

// Select a pivot

for (int pivot = 0; pivot <= rules.Count; pivot++)

{

// Compute the base image

foreach (Record rec in dataset)

rec.Reset();

foreach (Rule rule in rules.GetRange(0, pivot))

rule.Apply();

P
age

98
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

// Add only the records that are applicable

ArrayList view = new ArrayList(rules.Count);

foreach (Record rec in dataset)

{

bool putIn = true;

foreach (Rule rule in rules.GetRange(pivot, rules.Count - pivot))

if (rule.AppliesTo(rec))

{

putIn = false;

break;

}

if (putIn)

view.Add(rec);

}

// Reset the search

ResetRule(view);

// And look for a better rule

for (Rule next = NextRule(); next != null; next = NextRule())

{

int nextbest;

P
age

99
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

int nextbound;

bool nextconclusion;

bool nextIsDefeater;

next.ComputeGain(out nextbest, out nextbound, out nextconclusion, out nextIsDefeater);

if (nextbest > best)

{

best = nextbest;

found = next;

conclusion = nextconclusion;

isDefeater = nextIsDefeater;

rulePivot = pivot;

}

if (best < nextbound)

AddRules(next.GetChildren(titles, conclusionKey));

}

}

if (found != null)

{

found.Conclusion = conclusion;

found.Gain = best;

found.IsDefeater = isDefeater;

}

}

P
age

100
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

/// <summary>

/// Clears the current search space, and adds the empty rule as a

/// new starting point.

/// </summary>

/// <param name="records">The records that describe the dataset.</param>

void ResetRule(ArrayList records)

{

if (queue == null)

queue = new Queue();

queue.Clear();

queue.Enqueue(new Rule(new ArrayList(), true, records));

}

/// <summary>

/// Retreives and removes the next rule in the search space.

/// </summary>

Rule NextRule()

{

if (queue.Count == 0)

return null;

return (Rule)queue.Dequeue();

}

P
age

101
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

/// <summary>

/// Adds a list of rules to the search space.

/// </summary>

void AddRules(ArrayList rules)

{

foreach (object o in rules)

queue.Enqueue(o);

}

/// <summary>

/// Adds a single rule to the search space.

/// </summary>

public void AddRule(Rule rule)

{

rules.Add(rule);

}

/// <summary>

/// Displays the induced theory on the user’s console.

/// </summary>

public void DumpToConsole()

{

P
age

102
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

foreach (Rule r in rules)

Console.WriteLine(r);

}

}

}

P
age

103
–

A
p
p

en
d
ix

A
,

T
h
eory.cs

Appendix B

XSLT Template for Dataset

Generation

In lieu of an interactive environment for generating and interacting with queries,

it is possible to create datasets from XPath2 attribute definitions, by inserting

the name and query appropriately within the following sample template. XSLT

stylesheets (such as this example) can be directly executed on XSLT processors

with XPath2 support, such as Michael Kay’s SAXON1.

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="text"/>

<!-

Set-up the Titles

Each attribute should appear as a separate item in the

comma-separated list that appears at the top of the generated

dataset.

-->

<xsl:template match="/">

<xsl:text>Male,Youth,PreviousIncident,...</xsl:text>

<xsl:apply-templates/>

1Available at http://saxon.sourceforge.net/

Page 104 – Appendix B

</xsl:template>

<!-

Populate Each Record

Each of the XPath2 expressions for the attributes appear in the

select queries of separate value-of operations. These are then

comma-separated.

-->

<xsl:template match="case">

<xsl:value-of

select="person[attribute::type = ’defendant’]/gender = ’Male’"/>

<xsl:text>,</xsl:text>

<xsl:value-of

select="person[attribute::type = ’defendant’]/age < 21"/>

<xsl:text>,</xsl:text>

...

</xsl:template>

</xsl:transform>

Page 105 – Appendix B

Appendix C

Prolog Defeasible Logic

Meta-program

In [36], a meta-program for logic programming languages such as Prolog is pre-

sented. This work is simplified for our notation, and summarized here, because

the meta-program is an intuitive formalisation of the proof theory of defeasible

logic, for an experienced Prolog programmer.

We begin by declaring dynamic predicates:

:- dynamic fact/1.

:- dynamic defeasible/3.

:- dynamic defeater/3.

:- dynamic sup/2.

These predicates, are used to represent a defeasible logic theory as follows:

fact(Literal)

The facts of the case (as individual literals), are asserted in separate facts.

defeasible(Name, Ante, Conc)

Each defeasible rule is mapped into an equivalent assertion, consisting of: Name,

a unique identifier for the rule (used in the superiority relation); Ante, a list of

assumptions (or antecedents) of the rule; and Conc, a literal representing the

Page 106 – Appendix C

conclusion of the rule.

defeater(Name, Ante, Conc)

In the same way as defeasible rules, each defeater is mapped into an assertion.

sup(NameStronger, NameWeaker)

Each pair of rules that appears in the superiority relation is mapped by asserting

the names of the rules in separate tuples of the sup predicate. The first argument

is the name of the stronger rule.

Assuming the above predicates have been asserted to the Prolog database, we

define the following auxiliary predicates:

%

% negate(+LiteralIn, -LiteralOut)

% Negates the literal in the first argument.

%

negate(Atom, not(Atom)) :- atom(Atom).

negate(not(Atom), Atom).

%

% rule(-Name, -Ante, -Conc)

% A rule is either defeasible or a defeater.

%

rule(Name, Ante, Conc) :- defeasible(Name, Ante, Conc).

rule(Name, Ante, Conc) :- defeater(Name, Ante, Conc).

And finally, the defeasible predicate can be defined:

%

% defeasibly(+Conc)

% Succeeds if Conc follows from the theory.

%

defeasibly(Conc) :-

fact(Conc).

Page 107 – Appendix C

defeasibly(Conc) :-

defeasible(_Name, Ante, Conc),

forall(member(Conj, Ante), defeasibly(Conj)),

\+ overruled(Conc).

overruled(Conc) :-

negate(Conc, NegConc),

rule(CounterArgument, Ante, NegConc),

forall(member(Conj, Ante), defeasibly(Conj)),

\+ defeated(CounterArgument, Conc).

defeated(CounterArgument, Conc) :-

sup(Stronger, CounterArgument),

defeasible(Stronger, Ante, Conc),

forall(member(Conj, Ante), defeasibly(Conj)).

Given the above meta-program and a suitable set of Prolog assertions P , of a

defeasible logic theory T and facts F , we can define provability in defeasible logic

in terms of the provability relation of Prolog, ?-, as follows:

T, F ` +∂p iff P ?- defeasibly(p).

T, F ` −∂p iff P ?- \+defeasibly(p).

Page 108 – Appendix C

